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ABSTRACT

This study aims to develop and implement a novel smart rock technology for real-

time monitoring of the maximum scour depth and the effectiveness of riprap mitigation

measures. A smart rock is one or more stacked magnets encased in concrete that can

automatically roll to the deepest point of a scour hole around a bridge pier and provide its

location through remote measurement over time. Once integrated into a riprap measure,

the smart rock moves together with natural rocks and is thus a potential indicator of the

effectiveness of the riprap measure. Therefore, the localization and movement of smart

rocks were investigated and validated at various bridge sites. Specifically, three types of

spherical smart rocks designated as Arbitrarily Oriented System (AOS), Automatically

Pointing South System (APSS) and Automatically Pointing Upward System (APUS)

were deployed. The AOS and APSS were employed to develop and validate the

localization algorithm at an open and bridge sites. The APUS was used in smart rock

prototyping for field testing and implementation at three bridge sites. It was demonstrated

that the effect of steel reinforcement in bridge piers and decks on the orientation of smart

rocks was negligible. The localization accuracy with a single smart rock met the general

requirements for scour depth measurement in engineering application. The spherical

smart rock placed directly on riverbed at Roubidoux Creek successfully demonstrated its

movement to the scour hole during the December 27, 2015, flood. The smart rocks

deployed at Waddell Creek and at Gasconade River, however, were washed away. Thus,

additional smart rocks were deployed by making their top in flush with the riverbed for

future monitoring. Additionally, spherical smart rocks are not stable for riprap

effectiveness monitoring and polyhedral shapes are recommended for future study.
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1. INTRODUCTION

1.1. BACKGROUND

Bridges connect otherwise geographically isolated communities and represent one

of the most significant financial investments in ground transportation infrastructure.

Failure of these structures can significantly impact human welfare and economic

development. In the U.S., bridges collapse due to the removal of riverbed deposits around

bridge pier and abutment foundations, a process known as scour, which undermines the

structural stability of bridge elements located in the flow.

Scour and other hydraulic induced failures, accounting for 58% of all bridge

failures [1], have resulted in direct loss of lives and hundreds of millions of dollars in

damage repair. For instance, 10 people lost their lives during the collapse of the I-90

Bridge over the Schoharie Creek in New York in 1987 when a pier footing was

inadequately protected from the formation of a scour hole that undermined the pier [2

NTSB 1987]. As a result of the migration of the main channel which undermined a bridge

column and thus led to the collapse of the U.S. 51 Bridge over the Hatchie River in

Tennessee in 1989, 8 lives were claimed [2, 3]. The collapse of I-5 Bridge over the

Arroyo Pasajero River in California in 1995 costed the lives of 7 individuals after a 9.8 ft

scour hole had been developed over time [3, 4]. It is reported that the repair cost of

bridges with scour damage would be $100 million per event during 1964-1972 [5]. The

cost of flood repairs during the 1980s was estimated to be $300 million [6]. Between 993

and 1995, the costs for the floods in the Midwest, Georgia and Virginia were $178

million, $130 million, and $40 million, respectively [7]. Additionally, bridge collapses

due to scour can have a dramatic impact on local communities with financial impact

estimated to be five times the actual repair cost [8]. Therefore, it is necessary to protect

these critical infrastructure elements against scour-induced potential damage.

Scour induced damage can be prevented by armoring the riverbed around bridge

piers to reduce the amount of scour or by adjusting the river hydraulics to reduce the peak

flow, both requiring a significant amount of time and financial resources for

implementation. Scour monitoring, however, can be implemented quickly at a reduced

cost relative to the other preventive measures. For this reason, the Federal Highway



www.manaraa.com

2

Administration (FHWA)’s Highway Engineering Circular (HEC) No.23 lists scour

monitoring as a viable countermeasure for scour critical bridges [9]. The existing

monitoring methods, however, cannot be applied to assess the condition of bridge scour

in real-time because the continuous changes in the river and flow conditions required for

the prediction of the maximum scour depth [10, 11] are not made available during a flood

event. Real-time monitoring and assessment of bridge scour is critical not only to

maintaining ground transportation services but also ensuring the transportation safety in

hours or days during flood events [2]. Therefore, real-time field scour monitoring is

crucial for a more accurate prediction of scour and a further calibration of bridge design

equations.

1.2. LITERATURE REVIEW

Over the past half century, the United States Geological Survey (USGS) along

with FHWA and the state Departments of Transportation (DOTs) in the U.S. have made

significant efforts into the study of scour at bridge sites. In 1987, FHWA funded the

USGS to initiate the National Bridge Scour Program. After many years of studies, the

USGS published a national bridge scour report [12], which aimed to guide the practice of

engineers. From the report released by the USGS, countermeasures to mitigate bridge

scour usually involve physical protection, such as riprap, and/or monitoring. In case

physical countermeasures are cost prohibitive, monitoring can be used to ensure that

bridge foundations are stable. Monitoring can detect the evolvement of bridge scour

around piers and abutments that are either always under river or flooded in heavy raining

seasons, and provide warning prior to a sudden failure, thus protecting the lives of bridge

users and preventing bridges from collapsing if promptly mitigated.

1.2.1. State-of-the-art Development. Over the past few decades,

measurement and monitoring instrumentation has been developed for bridge scour.

FHWA’s HEC-18 by Richardson and Davis [13] first recommended the use of fixed

instrumentation and sonic fathometers (depth finders) as scour monitoring

countermeasures. The NCHRP Project 21-3 by Lagasse et al. [9], Instrumentation for

Measuring Scour at Bridge Piers and Abutments, developed, tested, and evaluated fixed

scour monitoring methods both in laboratory and field. The NCHRP Synthesis 396 by
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Hunt [14], Monitoring Scour Critical Bridges, assessed the state of knowledge and

practice for fixed scour monitoring of scour critical bridges. In addition, the technical

literature documented a number of scour detection and monitoring methods that have

been developed over the past two decades.

Lagasse et al. [9] classified various monitoring techniques into portable and fixed

instrumentations. Portable instrumentation such as diving, sounding rod, radio controlled

boat, reflection seismic profile, and ground penetrating radar, involves a manual

operation of measuring stream bed elevations at bridge foundations. The portable devices

can be used to monitor the entire bridge or transported from one bridge to another so that

they are cost effective tools to address the scour monitoring needs in a bridge network.

However, the portable devices cannot offer a continuous detection on the scour condition

of bridge foundations. On the other hand, fixed instrumentations involves monitoring

devices that are attached to bridge structures to detect scour at a particular location when

frequent measurements or real-time monitoring are desirable.

There are many options available for bridge scour monitoring. The selection of a

most effective and appropriate monitoring method itself could be a challenge for practical

engineers. Ideally, appropriate instrumentation should be selected based on site

conditions, operational limitations of specific instrumentation and engineering judgment,

the advantages and disadvantages of different technologies [9]. To facilitate the selection

of monitoring technologies, Lueker et al. [15] developed a scour monitoring framework

for instrumentation selection given site-specific bridge and stream conditions. The

framework is a Visual Basic for Applications (VBA) enabling excel workbook that

requires the input for site specific information of one bridge at a time, such as the details

of bridge, stream, and scour; it compares the application attributes with critical

characteristics of fixed scour monitoring equipment. The final output is a list of

instrument ranking in the framework and an overview of how various characteristics of

this application affect the ranking score for each instrument.

Although various scour monitoring techniques have been developed, by 2005

only approximately 100 out of 25,000 over-water bridges in the U.S. were instrumented

due to their limitations and associated costs, among which 90% were equipped by fixed

instruments. The sonar scour system was the most popular device used at 51 bridge sites,
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followed by magnetic sliding collar at 23 sites and float-out device at 13 sites [16]. To

date, little or no real time scour data exists from historic flood events.

1.2.2. Existing Monitoring Methods. Visual inspection has been applied as a

primitive and rapid visual inspection technique for bridge scour, which could not only

result in a poor degree of accuracy, but also pose a threat to the safety of the diver [17].

In addition, the diver must have relevant experience in scour measurement [18].

Radar. Particularly Ground Penetrating Radar as a geophysical technique has

been successfully applied to identify and determine the depth of scour [9, 18-24]. The

measurement of scour depth through radar is based on the wave propagation and

reflection at river bed. A diverging pulse of electromagnetic radiation from the

transmitting antenna (Tx) propagates through water and experiences multiple

reflections/transmissions at the bottom of the river when it encounters interfaces with

different dielectric constants (e.g. sediment and river bed). The reflections propagate back

to the water surface where the receiving antenna (Rx) is located. The variations recorded

in the received radar signal represent the change in river bed profile.

Sonar. Following the same principle as radar, a sonar device transmits a wave

toward an object to measure the time and amplitude of the reflected wave or echo. In

other words, the sonar technology is based on the round trip travel time of an acoustic

pulse from a sensor to the riverbed [25, 26]. Sonar instruments measure scour depth

through a supersonic sensor mounted on the edge of a sounding rod extending from a

bridge deck or an inspection scaffold on a bridge inspection vehicle [27]. Sonar has been

developed and used to characterize the sea bed by extracting the sediment type and

properties from echo signals [28]. Alternatively, sonar as a non-optical underwater

imaging technology has demonstrated the most potential application in scour monitoring

[29]. Underwater acoustic imaging can provide photo quality visual images of submerged

elements for structural inspection documentation and channel texture information for

scour monitoring during a flood event in an easy, fast and safe approach.

Although radar and sonar have been conveniently and successfully used to detect

the profile of a bridge scour hole, the monitoring results are sensitive to noise and

difficult to interpret especially when the water contains high concentration sediments,

debris or rocks in a flooded river. Therefore, radar and sonar are usually good for
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applications after flooding and thus cannot detect the maximum scour depth that is

achieved during a flood at a peak discharge [30].

Magnetic sliding collar (MSC). MSC is another effective device used for the

detection of scour. This instrument consists of a collar wrapped around a rod with a series

of magnetically activated switches at predetermined locations along the length of the rod.

The rod is driven into the streambed and the collar is embedded into the streambed [1,

31]. The scour depth is determined by the movement of the collar, which slides down the

magnetic rod as the deposits around the foundation is eroded away. Lu et al. [32] used an

MSC and a steel rod to monitor the total bridge scour during floods. The lower tip of the

steel rod was initially placed slightly below the riverbed in the main channel. When scour

occurred, the steel rod would sink as the surface of the riverbed was lowered. The scour

depth was determined based on the total lowering distance of the steel rod with respect to

its initial position.

Tilt sensor. A tilt meter basically detects scour-related settlements of pier or

abutment foundations [33, 34]. However, it can be a challenge to differentiate the

movement by scour and other factors such as traffic, thermal, wind and ambient

perturbations.

Float-out device. A float-out device has a radio transmitter buried in the riverbed

at particular locations (a certain depth) near bridge piers or abutments. As scour develops

and reaches that depth, the device floats up to the water surface and transmits a signal

that can be detected by a receiver at a remote station such as bridge deck [9]. Float-out

devices are inexpensive, but only measure the particular depth where each is buried.

Furthermore, such a device requires replacement once activated and washed away in the

river. Another similar technology using a high frequency band (13.56 MHz) radio

frequency identification (RFID) system with advantages of simple and low cost is

developed to directly monitor the scour condition around a bridge pier. A series of

passive tags with a unique number code each are buried in the riverbed near a bridge

foundation and interrogated by the reader antenna coil to check their existence. When a

tag is washed away due to scour, its response disappears during the one-to-one

interrogation from the RFID reader, indicating the position and depth of the scour by the

pre-embedment information uniquely assigned to the tag identification number [35].
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Sounding rods. Sounding rods are manual or mechanical (automated) gravity-

based physical probes [6, 9, 14]. A gravity-based probe drops with any change to the

streambed depth. As a result of self-weight, the probe may penetrate through granular

soils. To prevent self-penetration and vibration of the rod from flowing water, the foot of

the rod must be sufficiently large.

Radio-Controlled Boat. Fukui and Otuka [17] developed a Radio-Controlled

Boat (RC Boat) to detect bridge scour. A RC Boat system consists of a digital fathometer

for the measurement of scour depth, a telemeter transmitter of the measured data, a

telemeter receiver of the measured data, a total station installed at the river bank to locate

the boat, and a personal computer. The received data from the receiver and the location

data from the total station are automatically transmitted into the computer for processing

and evaluation of the scour depth at the streambed. The RC Boat can provide a precise

streambed condition around bridge piers, but cannot be used during a flood event when

debris or ice floats on water.

TDR. In recent years, time domain reflectometry (TDR) has been developed and

used for real-time monitoring of bridge scour. It operates by sending an electromagnetic

pulse through a transmission line with a fixed velocity. The pulse propagates down the

transmission line until the end of the line or some intermediate discontinuity (air/water

interface and water/sediment interface), where part of the pulse is reflected back to the

source. By measuring the returning time of the sent pulse, the physical distance between

the line end or the discontinuity and the TDR source can be calculated. In 1994, Dowding

and Pierce [36] adopted a vertically buried TDR sensor in the sediments adjacent to a

structural element. When scour occurred, a portion of the TDR sensor was exposed,

broken off, and shortened by the stream flow, which can be detected and measured.

However, the TDR sensor will be destroyed and must be replaced after each scour

event. Yankielun and Zabilansky [37] first introduced a TDR probe to identify the

sediment/water interface for scour monitoring. The TDR sensor made of steel pipe can be

permanently installed under the river bed. Field evaluation at several locations indicated

that the sensor was sufficiently rugged. Even so, the intrinsic design of the probe made it

difficult to install in the field condition. The acquired signals can be difficult to interpret

and the application was limited to a relatively short sensing range. Attempts were made
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to develop a robust algorithm for scour measurements and systematically interpret TDR

signals by understanding the electromagnetic wave phenomena and TDR system

characteristics [38]. The automatic scour monitoring system was demonstrated in

laboratory experiments; the robust algorithm can accurately evaluate the thickness of

sedimentation. Yu and Yu [39] developed a theoretical framework for an automatic scour

monitoring system using the TDR principle and analyzing the TDR signals to determine

scour condition and sediment status. In addition, it is indicated that TDR could accurately

measure the scour depth, the density of sediment materials and the electrical conductivity

of river water. The robust algorithm for TDR signals was further described, assessed and

evaluated by Yu and Yu [40-42] and compared with the ultrasonic method to illustrate

the advantages of the new TDR in Yu and Yu [43]. A new TDR sensor was designed

with a metallic coating to increase the sensing depth and the level of protection by Yu et

al. [44]. Tao et al. [45] designed an innovative TDR scour sensor for field applications

and the robust algorithm was used to retrieve scour information from TDR signals. To

further improve the sensitivity of the TDR sensor, an spiral TDR sensor was proposed

and laboratory validated for scour depth detection [46]. The sensitivity of spiral TDR is

four times than that of the straight TDR due to the spirally wrapped copper wire around a

rod increases the travel distance of the electromagnetic wave per unit length in the spiral

probe.

Fiber optic sensor. Fiber optic sensors have been used for scour measurement in

recent years based on wavelength or intensity measurement methods. They have many

advantages such as long-term stability and reliability, resistance to environmental

corrosion, high resolution, serial multiplexing capability, small size, geometrical and

structural compatibility, immunity to electrical and electromagnetic noise, and low cost

[47]. Wavelength based sensors [48-51] consists of a number of Fiber Bragg Gratings

(FBG) instrumented on a rod at predetermined locations and embedded into the sediment.

The scour detection principle was based on the fact that individual sensors are subjected

to increasing strains when exposed to the river flow as a result of scour [49].

Lin et al. [50] designed two systems for local scour monitoring. In the first design,

three FBG sensors were mounted on the surface of a cantilevered beam and arranged in

series along one single fiber. In the second design, several FBG sensors were arranged
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along one single optical fiber, but mounted on cantilevered plates installed at different

levels of a hollow steel pile attached to a pier or abutment. The beam or plates were bent

in the scour process and the induced strains were measured by the FBG sensors as

running water flows around the cantilevered beam or plates. The scour depth can be

detected by knowing the strain information indicated from the explosion condition of the

FBG sensors that were buried under the sediment or river bed [50]. This FBG-based

scour sensor was subsequently installed at the Dadu bridge site in Taiwan for scour

monitoring during floods. The FBG monitoring system appeared robust and reliable for

real-time scour depth measurements [51]. Huang et al. [52] developed a new type of

optical FBG-based scour monitoring sensors that excluded the influences of soil pressure

and static water pressure varying with the depth. In addition, FBG sensors were

embedded in a fiber reinforced polymer beam to improve the accuracy and durability of

measurement [53]. Three designs of a scour monitoring system using FBG were

compared in terms of the measurement of water level, maximum scour depth, scour

process and refilling deposition height [30]. The proposed system was tested in the

laboratory and then implemented with two test piles at a bridge site for long-term

monitoring [54]. The intensity-based measurement of scour depth is related to the

fundamental frequency of vibration of a rod embedded in the riverbed to the scour depth

and a single FBG sensor was used to measure the vibration frequency to obtain the scour

depth by the inverse relationship of fundamental frequency and the length of the sensor

rod [34]. In addition, a scour monitoring network of polymer fiber optic sensors (PFOSs)

and MicroElectroMechnaical System (MEMS) such as switches, phototransistor, LED,

amplifier, detector and multiplexing system [55] was designed and fabricated for

monitoring and detecting scour at bridge piers and abutments; the response of sensor was

greatly affected by the reflection property of different mediums so that the scour was

detected by the change of various mediums. However, for the use of FBG sensors,

installation design and fabrication techniques remain to be improved to withstand harsh

operation conditions in field application [51].

Piezoelectric film sensors. Piezoelectric films were applied to monitor the water

flow condition since voltage was generated as they were deformed (bent) under the effect

of water flow [56, 57]. Such a sensing device was built by attaching piezoelectric thin
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films to a rod at certain spacing and inserting the rod into a guide rail installed next to the

bridge pier. If the embedded piezoelectric films in the riverbed were disturbed by the

water current as a result of scour, the output voltage were large than that when not

disturbed. Therefore, the signals from all the piezoelectric sensors can indicate the

variation of soil/water interface before, during and after a food event. This device may

lead to false measurements as the result of high sensitivity [58].

Temperature sensors. Bridge scour can also be detected based on the

measurement of temperature variations at the water/sediment interface. A series of

thermocouples spaced 2 inches apart along a partially buried rod may determine the scour

depth by measuring the temperature gradient along the length of the rod [59]. The FBG

sensors were also adopted as an array of temperature sensors instrumented along the

length of a rod buried in the sediment to measure in real time the scour depth around a

structure under both ordinary and flood conditions [60-62]. The rate of heat loss of the

heated FBG by an electrical circuit embedded in sediment is slower than that in the flow;

therefore, when the temperature of sensors buried in the sediment is large than those in

flowing water, the bed level can be detected. The same idea based on the theory of heat

conduction was also employed to develop a new design of temperature-based sensor

consisting of a stainless steel cuboid shell, a heating piece and two temperature probes for

bridge scour monitoring [63]. The laboratory test, numerical analysis, and in-situ field

test were conducted to study a new large-diameter, hollow tube as a heat probe for scour

monitoring based on the different thermal properties of two environments: water and soil

[64]. These temperature-based devices are simple in concept to understand and available

for scour monitoring. However, they may not be accurate enough to read a temperature

change over small intervals. Their validations are mainly limited to laboratory evaluation.

Vibration based methods. The vibration-based methods have been used to relate

the dynamic response of a bridge to the scour condition of bridge foundations [65]. The

average spectral shape of the vibration of a bridge measured from two three-axis

accelerometers deployed on the upstream and downstream side of a pier was monitored

to see if the natural frequencies of the pier had been changed. A similar approach was

taken to monitor both the natural frequency and the mode shape of a bridge, which were

related to the sediment variation surrounding the bridge foundations [66]. A tilt sensor
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was used to monitor sensitive bridge columns by relating the fundamental frequency of

the bridge with the scour depth [67]. Although the vibration-based measurements are a

potential indicator to the health of piers, variations in ambient temperature and traffic

loading could cause more changes in the fundamental frequency of a pier than changes by

the bridge scour. Vibration-based turbulent pressure sensors (VTPs) were proposed to

detect scour by installing them on a partially-buried pipe [68]. The energy content of each

VTP along the pipe was monitored to indicate the scour level since the energy content of

the sensors exposed to water flow is one or two orders of magnitude greater than that of

the sensors buried in the sediment. The VTP sensors have been shown to be reliable and

robust in harsh hydraulic environments [58]. However, the VTPs are still limited to the

length of a pipe and the vibration may be caused by debris or traffic loading. More

recently, the natural frequency of a pile was monitored and numerically analyzed to

detect the presence of scour and possibly estimate the scour depth [69]. The developed

numerical model was further extended to consider the effect of a bridge superstructure

and establish the relationship between the structure's natural frequency and the scour of

the foundation [70]. A vehicle-bridge-soil interaction (VBSI) model was developed to

possibly detect changes in frequency using the bridge dynamic response to a passing

vehicle. An Extended Kalman Filter (EKF) using the time history of dynamic

measurements along with a finite element model was proposed to identify the scour depth

with high sensitivity and better accuracy [71].

Tracking or imaging sensors. Lin et al. [72] used distributed MEMS sensors for

pressure measurement. Chang et al. [73] developed a multi-lens monitoring system that

can track scour images and retrieve the scour information through an image recognition

process. Another tracking technique for sediment transport and scour around bridges was

developed by Lauth and Papanicolaou [74] using radio waves, a communication between

a RFID and transponders embedded in individually tracked particles that are directly

involved in the process of scour. A combination of multi-beam ultrasonic echo sounders

and vibrating wire piezometers was used to measure and map the riverbed topography

and detect local scour appeared within and around the pile group [75, 76]. A three

dimensional profiling of the river bed around bridge piers has also been attempted using a

rotatable sonar profiler [77, 78]. The scour monitoring around a bridge can be realized by
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tracking the bed-level images with a micro camera mounted on a movable holder that can

be driven by the motor to move on the rail fixed on the pier. The system can recognize in

real time the bed-level position and obtain the scour-depth evolution by adopting two

scour image processing methods: brightness intensity segmentation (BIS) and particle

motion detection (PMD) [79].

Smart scour sensor. A post instrumented with an array of wireless smart scour

sensors at varying heights can be installed around bridge abutments or piers to monitor

the sediment depth and profile around the foundation in real time [80]. The sensor array

is composed of bio-inspired, whisker-shaped magnetostrictive flow sensors that are

highly rugged, self-powered, and able to detect water flow by bending. The sensors

located above the sediment level respond to the dynamic flow and the sensors located

below the sediment line only return with static measurements. A real-time bridge pier

scour monitoring system with low cost commercial hall-effect sensors was developed and

verified in laboratory experiments [81]. The monitoring system is based on a master-

slave configuration composed of a host controller (master), a gateway (slave), a Power

over Ethernet (POE) switch and a sensor node to send and receive commands and access

the data collected. The sensor node is configured with a thin metal strip attached with a

neodymium magnet and a hall-effect sensor. The distance between the magnet and the

hall-effect sensor varies as the thin metal strip is bent due to water flow, and the variation

is reflected by the output voltage of the hall-effect sensor. During experiments, it was

observed that the output voltage of the hall-effect sensor dropped quickly when the

sensor node buried in the sand was washed away due to the rapid scour erosion. The slow

scour process and partial sand removal around the hall effect sensor module results in a

slow rate of voltage change in the hall-effect sensor. Therefore, the scour condition is

evaluated according to the rate of voltage change of the corresponding pre-buried hall-

effect sensor node. Similarly, a rugged sensor system using under-water sensor node

buried deeply in the riverbed close to the bridge pier was developed to monitor scouring

condition of the bridge pier in real time [82]. The under-water sensor node consists of

two stacked octagon PCBs with a plastic enclosure that is then set up in a steel hollow

ball. An accelerometer attached on the PCB is steady in normal condition when the

under-water sensor is fully buried in the sand. However, it would be exposed and vibrate
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when the sand of the riverbed is scoured due to the river water flow during a heavy rain

or storm. Therefore, the vibration data of each sensor sent to the control box can be used

to identify the scouring condition.

Medium property sensor. A scour probe embedded into the sediment next to a

foundation to detect underwater bed level variation based on the measurement of soil

electromagnetic properties was proposed to remotely monitor in real time scour and

sediment deposition processes [83]. Another similar approach for scour depth

measurement was to measure the oxygen level of water to identify the water level around

a pier. The optical dissolved oxygen (DO) probes [84] were installed along the buried

length of a bridge pier or abutment to monitor DO levels at various depths. The scour

depth is then evaluated by comparing the DO levels of sensors embedded in soil, which

are negligible, to those exposed to water flow because of scour, which will increase

significantly and reach the flowing water DO level.

1.3. RESEARCH OBJECTIVES AND SCOPE OF THIS WORK

The above review clearly indicated two groups of scour monitoring techniques:

fixed and portable instrumentations. The fixed instrumentation is installed prior to storm

events and limited to the measurement of scour condition near the fixed location around a

bridge pier or abutment. Two challenges arise in applications. First, the scour information

monitored may not be most critical due to fixation of the monitoring devices in horizontal

plane. Second, whether the monitoring device can survive the harsh environment during a

flood event is yet to be tested. Although the portable instrumentation can be applied to

cover a wide area of a bridge pier or abutment, it is too risky to operate most, if not all,

the portable devices during a flood event. Overall, monitoring the scour process of a pier

or abutment during a flood event is an unsolved challenge in bridge engineering.

The goal of this study is to develop and implement a novel smart rock technology for the

measurement of scour depths and the effectiveness detection of riprap mitigation

measures in real time. The main objectives of this study are to: (1) develop, design,

package, and prototype smart rocks; (2) develop and validate the localization algorithms

of smart rocks at several test sites; and (3) implement the smart rock technology at

representative bridge sites. To achieve the main objectives, seven research tasks are
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designed and planned as follows:

1. Design guidelines of smart rocks for scour and riprap effectiveness monitoring,

2. Type, prototyping, and deployment of smart rocks at three bridge sites,

3. Localization of a single smart rock in uniform ambient magnetic field,

4. Localization of a single smart rock in non-uniform ambient magnetic field,

5. Localization of two smart rocks in non-uniform ambient magnetic field,

6. Evolutionary mapping of smart rocks over time, and

7. Semi-active smart rocks for enhanced sensitivity and spatial resolution.

Tasks 1 and 2 address the first objective. Tasks 3-5 and 7 are designed to achieve

the second objective. Tasks 2 and 6 are proposed to meet the third objective.

1.4. ORGANIZATION OF THIS DISSERTATION

This dissertation consists of seven sections. Section 1 introduces the main

objectives and scope of work, literature reviews on bridge scour monitoring, and seven

technical tasks that will be addressed in the following five sections. Section 2 introduces

the development of the smart rock technology, deals with the design of smart rocks for

scour and riprap effectiveness monitoring, and finalizes the smart rocks for three different

bridge sites. Section 3 deals with the localization of a single smart rock with an

automatically pointing south magnet or with an arbitrarily oriented magnet in uniform

ambient magnetic field. Section 4 deals with the localization of a single smart rock

automatically pointing south magnet or with an arbitrarily oriented magnet in non-

uniform ambient magnetic field. Section 5 presents the field implementation of smart

rocks at three bridge sites and the validation of the localization algorithms developed in

Section 4. To improve the sensitivity and spatial resolution of smart rocks based on the

static measurement of magnetic fields, Section 6 explores a semi-active concept of smart

rock with an embedded magnet and communication electronics for the dynamic

measurement of magnetic fields. The main research outcomes, findings, and future

studies are summarized in Section 7.
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2. SMART ROCK TECHNOLOGY FOR BRIDGE SCOUR AND RIPRAP
EFFECTIVENESS MONITORING

2.1. CONCEPT AND MEASURAND OF SMART ROCKS

Smart rocks are either natural rocks or concrete encasements with embedded

permanent magnets. Properly-designed smart rocks automatically roll to the deepest point

of a scour hole when deployed in top river-bed deposits around a bridge pier. Once

accurately positioned over time, they can function as field agents to collect the scour

depth as scour develops. During a flood event, the scour depth data can be transmitted to

the engineer-in-charge or decision makers through remote measurement of the magnetic

field strength of the magnets in smart rocks. In addition to the maximum scour depth that

is most critical to the engineering design and maintenance of bridge foundations, smart

rocks can be used to evaluate the effectiveness of a rip-rap scour countermeasure in real

time since rock movement is an indicator of its incipient failure.

To track the location of a smart rock, a commercial magnetometer is used to

measure the intensity of the total magnetic field of the Earth, the permanent magnet

inside the rock and any other ferromagnetic substances. A piece of survey equipment is

employed to survey the measurement stations of the magnetometer. The position of the

smart rock can be inversely obtained through a mathematical relationship between the

magnetic intensity and the position of the magnet inside the smart rock. Therefore, the

measurand for bridge scour monitoring is the intensity of magnetic field and the positions

of the measurement stations.

2.2. APPLICATION SCENARIOS OF SMART ROCKS

For scour monitoring as illustrated in Figure 2.1(a), properly-designed smart rocks

are near-surface deployed in riverbed deposits on the upstream of a bridge pier. They can

automatically roll to the deepest point of a scour hole as it develops over time, and thus

provide the maximum scour depth through their positioning by remotely measuring the

magnetic field of the embedded magnet with a magnetometer from the bridge deck.

When the scour hole is refilled, the smart rocks can be buried into debris and deposits but

still give the maximum scour depth to which the bridge pier is ever exposed. A smart

rock can be tracked over time by measuring its disturbance to the ambient (the Earth +
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other ferromagnetic substances) magnetic field with a magnetometer set up at several

remote stations. Since the maximum scour depth is directly associated with the position

of the smart rock, localization of the smart rock is a major effort in bridge scour

monitoring.

For riprap effectiveness monitoring as illustrated in Figure 2.1(b), smart rocks are

mixed with natural rocks that are used to protect a bridge pier. The incipient motion of

properly-deployed smart rocks is a good indication of riprap disassembling. Like scour

hole monitoring, localization of the smart rocks is critical in this application.

Figure 2.1. Two application scenarios of smart rocks: (a) maximum scour depth
monitoring and (b) riprap protection effectiveness monitoring.

2.3. DEVELOPMENT OF SMART ROCKS

A smart rock can be made of a spherical concrete encasement of one or more

permanent magnet(s) for easy rolling to the bottom of a scour hole in application. For

maximum magnetic field strength, off-the-shelf (large, cylindrical) permanent magnets

can be selected to fit into the design size of a smart rock. To date, neodymium-iron-boron

(Nd2Fe14B) magnet is one of the most advanced permanent magnets commercially

available in the world. As such, two types of magnets, N42 (Br Max: 1.32 Tesla) with

10.2 cm (4") in diameter and 5.1 cm (2") in thickness and N45 (Br Max: 1.38 Tesla) with

15.2 cm (6") in diameter and 5.1 cm (2") in thickness are considered. The magnet(s) can

be arranged differently inside a concrete encasement, resulting in different types of smart

(a) (b)
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rocks. For instance, a N42 magnet can be configured to make its poles to be directed

randomly, to geographical South Pole, and upward. The three types of configuration are

referred to as Arbitrarily Oriented System (AOS), Automatically Pointing South System

(APSS), and Automatically Pointing Upward System (APUS).

2.3.1. AOS. The easiest and simplest fabrication of a smart rock is just to

encase a magnet in a sphere concrete mold to form the AOS whose magnet pole direction

rotates arbitrarily as the smart rock moves under water flow. Figure 2.2(a) and 2.2(b)

show the schematic view and one prototype of a smart rock with the AOS.

Figure 2.2. AOS design: (a) Schematic view with concrete and (b) Primitive view.

2.3.2. APSS. Like a compass that has been widely used for direction and

navigation around the world, the magnet embedded inside a smart rock can be designed

such that it always points to the North Pole or near geographical south of the Earth. Such

a magnet and its supporting components constitute an APSS proposed and developed in

this study. The pole direction of the magnet always points to the North Pole of the Earth’s

magnetic field as the smart rock moves or rotates under water flow. Since the magnetic

field around a magnet is directly related to the rotation of the magnet, the fixed direction

simplifies the calculation of the magnetic field and thus the optimization process to locate

the smart rock.

Figure 2.3(a) shows the schematic view of an APSS design. The key to this design

is to create a frictionless mechanism that makes a magnet free to rotate at all times. This

design consists of an inside organic glass ball, an outside organic glass ball, low viscosity

liquid filled in between the two balls, one cylindrical N42 magnet placed into the inside

ball, a level indicator, and some copper beads distributed as balanced weights. As shown

(a) (b)
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in Figure 2.3(b) for the final design, the magnet is 10.2 cm in diameter and 5.1 cm in

height. Its side face is glued to the surface of the inside ball with a diameter of 20 cm.

The outside ball has a diameter of 22 cm. The inside ball with the magnet and the level

indicator is designed to remain in equilibrium or to be free to rotate once the inside ball

floats within the outside ball. Therefore, the magnet in the APSS will always point to the

North Pole of the Earth’s magnetic field, which is near the geographical South of the

Earth.

Figure 2.3.  APSS Design: (a) schematic view with concrete encasement, (b)
specifications, and (c) first prototype.

2.3.3. APUS. Like the APSS, an APUS is made of two concentric plastic balls.

In this case, however, the center axis of the magnet fixed to the inside ball is

perpendicular to the ground and the South Pole of the magnet is directed upward or
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downward based on unbalanced weights. Unlike the APSS, the gravity-based APUS is

designed to be not influenced by any surrounding ferromagnetic objects in practical

applications. Figure 2.4 shows the design of an APUS with the same size of two

concentric balls and N42 magnet as those of the APSS.

Figure 2.4.  APUS design: (a) schematic view with concrete encasement, (b)
specifications, and (c) primitive prototype.

2.3.4. Design Guidelines. Smart rocks are natural rocks or concrete encasements

with embedded objects to facilitate the remote measurements of their spatial locations.

They are passive when the embedded objects are permanent magnets and the magnets are

remotely located with one or several magnetometers, and active when the embedded

objects are sensors and communication devices and the sensors are located from a remote

measurement station through wireless communication. When deployed near a scour

critical bridge pier, smart rocks are displaced as their underlying deposits are eroded

away. Therefore, properly-designed smart rocks can provide the critical information
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about the onset movement of riprap slope protection. If the motion of smart rocks can be

controlled such that the rocks remain at the bottom of a developing scour hole near the

bridge pier, the smart rocks can also provide critical information about the maximum

scour depth, which is the most important parameter in bridge engineering and design for

scour effect.

2.3.4.1 Design considerations. Smart rocks are designed to meet two

requirements: 1) facilitate remote measurement for rock localization and 2) ensure

automatic movement to the bottom of a scour hole to be monitored. The size of smart

rocks is often constrained by the minimum size of embedded objects, such as permanent

magnets, that are required for sufficient localization accuracy and measurement distance.

The size and density of smart rocks must be selected such that the rocks can always stay

at the river bed, overcome water current and roll down the slope of a scour hole, and

remain at the bottom of the hole. Therefore, the density of smart rocks should range from

that of water and that of rocks used in riprap slope protection.

To overcome water current and roll down the slope of a scour hole, the size and

density of smart rocks highly depend on the critical velocity of water flow and the water

depth at a bridge site. The critical velocity of water flow is defined as the velocity at

which deposits at the river bed begin to move or when the local shear stress of deposits

exceeds its critical value. The water depth represents the effect of gravity on the

movement of smart rocks, which affects the critical velocity of water flow.

For simplicity, the equation for the critical velocity of water flow in HEC 18 and

the equation for the riprap size in scour protection in HEC 23 are referenced in the

determination of the size and density of smart rocks. The two equations in SI units are

rewritten as follows:
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where d represents the size of a smart rock in m; n is the Manning's roughness

coefficient; Vc is the critical velocity of flow in m/s; Ks is a dimensionless Shields

parameter related to the initiation of motion of smart rocks (0.052~0.054 for cobbles and
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boulders); Ss= ρs/1000 where ρs is the mass density of smart rocks in kg/m3; y is the depth

of water flow in m; D50 is the median diameter of smart rocks in m; K is the coefficient

for pier shape (1.5 for round-nose piers and 1.7 for rectangle piers); V is equal to the

average channel velocity, m/s, multiplied by a coefficient of 0.9 for a pier near the river

bank in a straight uniform stream or 1.7 for a pier in the main current of flow around a

bend; and g is the gravitational acceleration in m/s2.

2.3.4.2 Design procedure. A 3-step design procedure for the selection of the

size of the size and density of smart rocks is described as follows.

Step 1: Determine hydraulics parameters near a bridge site. The flow velocity in

the channel at a bridge site and the water depth directly in the upstream of scour critical

piers, corresponding to a 100-year flood, are two most important parameters needed for

the selection of smart rock size and density. They can often be found from hydraulic

studies by the United States Geological Survey (USGS) or Federal Emergency

Management Agency (FEMA).

When no hydraulic studies are available near a bridge site, the flow discharge

from a recent flood event and its corresponding water depth are first estimated from the

data collected at any USGS gage station deployed at the upstream or downstream of the

bridge site. Considering no water loss, the flood discharge at the bridge site is assumed to

be equal to that in the upstream or downstream of the bridge site. The average channel

velocity can then be estimated by dividing the flood discharge by the flow cross section,

which in turn depends on the water depth at the bridge site. For a given water depth, the

flow cross section can be estimated based on the as-built bridge drawings or a site visit

with necessary measurements. Next, the local velocity at a scour critical bridge pier is

determined by multiplying the average channel velocity by an amplification factor

depending on the shape of river at the bridge site, the location of the pier (in main

channel or close to the river bank), and the shape of the pier. Finally, the relationship

between the local velocity and water depth can be established for sensitivity analysis.

Step 2: Constrain the size and density of a smart rock. Eq. (2.1) is applied to guide

the selection of the size and density of a smart rock. With the local velocity and water

depth from Step 1, the size of a smart rock can be related to the density of the rock in an

inversely proportional relation. In other words, the larger a smart rock, the lighter the
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rock for given local velocity and water depth. In practice, either the size or density of a

smart rock can be estimated from application needs. For example, the minimum

dimension of a magnet to be embedded in a smart rock to meet the required localization

accuracy and measurement distance can be referenced in the selection of rock size (e.g. >

20 cm). The density of the smart rock can then be determined correspondingly.

Alternatively, the density of a smart rock can be considered to be same as that of natural

rocks (2,650 kg/m3), particularly when the smart rock is deployed to monitor the

effectiveness of a riprap slope protection strategy. However, the size corresponding to the

density of natural rocks is too small in general. Therefore, smart rocks should be sized

first before their density is determined from the critical flow velocity and riprap sizing

equations.

Step 3: Finalize the design of smart rocks. After the size and density of smart

rocks have been estimated in accordance with the incipient motion of the rocks, the size

and density must be modified by a design factor (1.2~1.3) that accounts for any

uncertainties associated with the estimation of hydraulic data and the use of empirical

equations. By considering the design sensitivity to the flow velocity and water depth at

the bridge site and the physical constraint on the size and density of smart rocks, several

choices of smart rocks are determined. The final selection of the size and density is made

by rounding up their calculated numbers and easing the deployment and fabrication of

smart rocks, such as the use of standard mold sizes for the casting of concrete encasement.

2.3.5. Evaluation of Size and Density of Smart Rocks at Various Bridge Sites.

The incipient motion of a single particle is likely activated by the threshold condition

between erosion and sedimentation of the rock. Based on the river geometrics, the

hydraulic conditions, the channel bed shapes, the bed sediment size, and the viscous

properties of the bed sediment materials, different empirical criteria can be used to

evaluate the incipient motion of a sediment particle. According to HEC18, the critical

velocity Vc is referred to as the velocity at which cohesionless particles begin to move.

Similarly, the critical shear stress τc is referred to as the shear stress that represents the

initiation of motion for cohesionless particles. In addition, the HEC 23 provided a

formula for rock riprap sizing d50 on a channel bed around bridge piers. These approaches

were the empirical equations obtained through model experiments and may have different
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application limitations. Since the critical velocity of a rock is derived as its local shear

stress reaches a critical value referred as the critical shear stress, the outcomes from

critical velocity or critical shear stress are equivalent. The incipient motion empirical Eq.

(2.1) and Eq. (2.2) provided in Section 2.3.4 will be employed to evaluate the size and

density of smart rocks at different bridge sites.

In this study, three bridges over rivers or creeks are selected for validation testing

of the monitoring technology with smart rocks. One of them is located in California on

Highway 1 over the Waddell Creek (Br. No. 36-0065). The other two bridges are located

in Missouri on US63 Highway over the Gasconade River and I-44 Highway over the

Roubidoux Creek.

According to guidelines described in Section 2.3.4, in order to increase the

effective measurement distance for magnetic fields, two stacked N42 magnets (10.2 cm

or 4" in diameter and 10.2 cm or 4" in total height) or one larger N45 magnet (15.2 cm or

6" in diameter and 5.1 cm or 2" in height) are considered as the magnetic core of a smart

rock for field deployment. The sizes of inside and outside balls are also increased to meet

the floating requirement of the inside ball with the two stacked magnets within the

outside ball. The diameters 25 cm and 28 cm, commercially available for the inside and

outside balls, are respectively selected. Further, to cast concrete encasement as the

enclosure of a smart rock, a 36.8 cm (14.5 in)-diameter standard mold is selected.

Substituting this size of smart rock (d = 36.8 cm or 14.5 in.) into the incipient motion Eq.

(2.1) and Eq. (2.2) yields the density of smart rocks for three bridge sites:

2.3.5.1 Highway 1 over the Waddell Creek (Br. No. 36-0065). The bridge is

located approximately 28 km (17 miles) north of the City of Santa Cruz in Santa Cruz

County. Built in 1947, the 4-span structure as shown in Figure 2.5 is 55.1 m (180.8 ft)

long and 9.7 m (31.7 ft) wide. Continuous reinforced concrete (RC) T-girders are

supported on RC piers and seat-type abutments. In the upstream of the bridge, the terrain

is dominated by small mountain ranges that flank both sides of the creek. In the

downstream of the bridge, the channel alignment changes with flow intensity as it flows

through the beach (loose, coarse sand) towards the Pacific Ocean.

In February of 2000, high flows from a storm caused severe erosion to the

upstream channel banks of the south roadway approach, extending into the embankment
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at Abutment 1. The high flows also exposed some piles at Pier 2 up to 2.7 m (9 ft). Rock

slope protection (0.7 to 1 m in diameter) was placed in March of 2000 along the eroded

sections of the roadway embankments and channel banks. Since then, this bridge has

been classified as scour critical. In order to estimate its scour potential, hydraulic

parameters (flow skew, tidal influence, flow contraction, and pressure flow) were

obtained from an advanced 2-D hydraulic model established by the California

Department of Transportation (Caltrans).

Figure 2.5. Highway 1 Waddell Creek Bridge.

The 100-year flood discharge (Q100) in the channel was estimated from the

regional flood-frequency equation based on the historical gage data from USGS. It was

calculated to be 162 m3/s and rounded up to 170 m3/s in this study. During the 100-year

flood, the high water elevation (HWEL) reached 2.865 m, which was well below the

bottom of girder elevation (El = 4.145 m). Therefore, no submersed condition existed and

no pressure flow occurred. In normal conditions, the uncontrolled tide from the Pacific

Ocean has no effect on the flow elevation at the bridge site. The flow depth (y) and

velocity (V) in the directly upstream of various piers obtained from the 2-D analysis

model are listed in Table 2.1. The materials in channel bed varied from coarse sands to

large cobbles. Specifically, coarse sands were noted in the vicinity of the bridge, small

pebbles were found in the upstream of the bridge, and pebbles and/or cobbles were noted

in the downstream of the bridge. The Manning's roughness "n" value was 0.02 for the

channel and beach areas, 0.04 for the grassy banks, 0.045 for the large rock slope

protection zone, and 0.10 for the bank sections lined up with small trees.
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Table 2.1.  Hydraulic Parameters at Various Bents

Bent No. 2 3 4
y (m) 3.566 2.012 0.152

V (m/s) 2.286 3.048 1.585

It was concluded by Caltrans that Bent 2 would be laterally unstable during the

anticipated 100-year flood event due to excessive pile exposure. Scour at Bents 3 and 4

should not have any instability issues. Therefore, the hydraulic parameters at Bent 2 were

selected to estimate the size and density of smart rocks in this study.

The evaluation for scour depth and riprap effectiveness monitoring at Bent 2 was

conducted based on the critical velocity and the riprap size, respectively. Eq. (2.1) was

used to estimate the density of a smart rock from the critical velocity equation with the

following parameters: Ks = 0.052 for fine cobbles from the USGS Scientific

Investigations Report 2008-5093; Ss = ρs/1000, where ρs is the mass density of smart

rocks in kg/m3; g = 9.81 m/s2; d = 0.368 m for smart rocks based on the required space

for magnet embedment; Vc = V = 2.286 m/s at Bent 2; y = 3.566 m at Bent 2; and n =

0.041d1/6=0.0347. That is,

1/2
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2.3.5.2 US63 Highway over the Gasconade River (Br. No. A3760). The bridge

over the Gasconade River on US Highway 63 is located approximately 8.9 km (5.5 miles)

southeast of Vienna in Maries County, MO. Built in 1970's, it is a 12-span concrete-

girder structure as schematically shown in Figure 2.6. The main flow goes between Bents

4 and 5 during dry seasons. During a flood season, Bent 4 could be potentially subjected

to severe contraction scour and local scour, threatening the safety of the bridge. The 100-

year flood discharge in the channel (Q100 = 4234 m3/s or 146000 ft3/s) was estimated

from the historical data recorded from the USGS gage station at Jerome, MO (gage No.

06933500).
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Figure 2.6.  Scour condition of the Gasconade River Bridge.

The average flow velocity at the bridge site was estimated by dividing the 100-

year discharge by the cross sectional area of the channel. Based on the as-built bridge

drawings and flow elevations, the cross sectional area (A) was estimated to be 3395 m2

(36544 ft2). Thus, the average channel velocity Vaverage = Q100 /A = 1.218 m/s. The

velocity directly in the upstream of Bent 4 was then calculated by multiplying the average

channel velocity by 1.7 for a pier in the main current of flow. The flow depth at Bent 4 is

approximately 12.2 m (40 ft) estimated from Figure 2.6. Once again, the diameter of

smart rocks was taken to be 0.368 m, and n = 0.041d1/6=0.0347. Therefore, the density of

smart rocks can be determined from the critical velocity criterion.
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2.3.5.3 I-44 over the Roubidoux Creek (Br. No. L0039). The Interstate I-44

over the Roubidoux Creek near Waynesville, MO, is located about 19 km (12 miles)

South of Crocker in Pulaski County. From the bridge drawings provided by Missouri
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Department of Transportation, this bridge has 10 spans with the main flow going between

Bents 5 and 7 as shown in Figure 2.7. The pier at Bent 6 may be scour critical. Since

there is no documented record for the 100-year flood discharge near the bridge site, the

maximum discharge and flow depth (Qmax = 515.4 m3/s = 18200 ft/m3 and y = 5.70 m =

18.7 ft) recorded at the USGS gage station (USGS 0698300, Roubidoux Creek above

Fort Leonard Wood, MO) during the flood event in August, 2013, were used in

calculation. The cross sectional area (A) during the flood event was estimated to be 1087

m2 (11703 ft2) from the bridge drawings. Therefore, the average channel velocity Vaverage

= Qmax /A = 0.474 m/s, and the velocity directly in the upstream of Bent 6 was estimated

by multiplying the average channel velocity by a coefficient of 1.7.

Figure 2.7. Drawing of I-44 Roubidoux Creek Bridge at Bents 5-7.

Once again, the diameter of smart rocks was kept to be 0.368 m, and n =

0.041d1/6=0.0347. Therefore, the mass density of smart rocks can be determined based on

the critical velocity as follows.
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2.3.6. Final Design of Smart Rocks. The final design of smart rocks not only

depends on the hydraulic condition they are subjected to, but also on the intensity of

magnetic fields they can generate at a required measurement distance. The field intensity

is significantly affected by the size and orientation of the magnets encased in the smart

rocks.
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2.3.6.1 Size and density. Smart rocks will be deployed in the river around a

bridge pier to measure the maximum scour depth or mixed with natural rocks to form a

riprap countermeasure and monitor the effectiveness of the riprap protection. The

hydraulic condition of a smart rock was taken into account in the estimation of the rock

size and density in Section 2.3.5. Due to deployment convenience and standard mold

sizes for the concrete casting of round encasements, the diameter of smart rocks was

taken to be 0.368 m. The initial mass density of the smart rocks can then be determined

from the local flow velocity and water depth at various bridge sites as discussed in

Section 2.3.5. However, due to the uncertainties of estimated hydraulic parameters, the

calculated mass density from the critical velocity should be increased by 1.2 or 1.3 times

in order to prevent the deployed smart rocks from being washed away, depending on the

available hydraulic data at bridge sites.

Specifically, for Highway 1 Waddell Creek Bridge, a design factor of 1.2 was

considered since a detailed 2D hydraulic model was developed by Caltrans to derive the

hydraulic parameters at the bridge site. Therefore, the density of smart rocks should be

1.2×1215 = 1458 kg/m3 based on the evaluation of critical velocity. For all other bridges,

a larger design factor of 1.3 was considered due to insufficient information on the local

hydraulic data at these sites. Therefore, the density of smart rocks should be 1.3×1117 =

1452kg/m3 for US63 Gasconade River Bridge, and 1.3×1022 = 1432 kg/m3 for I-44

Roubidoux Creek Bridge. For easy fabrication, the target density of smart rocks was

finally taken to be 1495 kg/m3 for a given diameter of 0.368 m.

2.3.6.2 Internal configuration. The magnetic field of a permanent magnet

changes with the orientation of the magnet. For example, the intensity at two poles of the

magnet is twice as much as that at its equator. In practical applications, the magnetic field

of a smart rock with an embedded magnet is measured from a magnetometer that is

stationed either on the river bank or on the bridge deck.

When a magnetometer is set on the river bank, the two poles of a magnet should

be aligned with the Earth's magnetic field for maximum sensitivity. Such a smart rock

with the magnet was referred to as an APSS as detailed in Figure 2.3. The advantage of

the APSS monitored along the river bank is that the measurement station can be located

in South or North pole of the magnet, which accelerates the convergence of the APSS
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localization algorithm with high accuracy. The disadvantage of the APSS is that the

direction of the magnet is easy to be affected by strong ferromagnetic substances in the

river. To avoid the direction variation by surrounding ferromagnetic substances, the south

or north pole of the magnet can be faced to the sky. In this case, however, the

measurement for maximum sensitivity is restricted to one side of the magnet, which may

reduce the accuracy of rock localization. Besides, during a storm season, river banks are

often submerged under water and inaccessible to field tests. Therefore, the APSS is

preferred to be studied in open field for smart rock characterization and less desirable for

deployment in river or creek for field measurement.

When a magnetometer is set on the bridge deck, the two poles of the magnet

should be aligned vertically due to several reasons. First of all, the strongest magnetic

field of a magnet can be found at its two poles, which is in good alignment with the

vertical sensor of the magnetometer. Secondly, the direction of the magnet is less affected

by surrounding ferromagnetic substances, which ensures stable and repeatable

measurements over time. Finally, the gravity-oriented direction of the magnet

considerably reduces the degree of freedom in the localization algorithm. Furthermore,

the south pole of the magnet should be faced up or to the bridge deck for larger intensity

of the combined magnetic field of surrounding ferromagnetic substances and the magnet

since the three bridges are located in northern hemisphere. In this case, the smart rocks

with an APUS are a reasonable choice for field deployment.

Therefore, the final internal configuration of smart rocks for three bridge sites is

APUS. Specifically, for Highway 1 over the Waddell Creek and I-44 over the Roubidoux

Creek, two stacked N42 magnets (maximum residual flux density: 1.32 Tesla) are

configured for practical applications. Figure 2.8 (a) shows the schematic view of an

APUS with two stacked N42 magnets. The diameter of inside and outside balls are 25 cm

and 28 cm, respectively, to ensure that the inside ball with two magnets placed at the

bottom always remains in suspension. For the US63 highway bridge over the Gasconade

River, one larger N45 magnet (maximum residual flux density: 1.38 Tesla) with 15.2 cm

(6'') diameter and 5.1 cm (2'') height was selected to generate a stronger magnetic field

for practical application. Figure 2.8 (b) illustrates the schematic view of an APUS with

one N45 magnet placed at the bottom of the inside ball.
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Figure 2.8. Schematic view of an APUS: (a) two stacked N42 magnets and (b) one N45
magnet.

2.3.6.3 Design details. A smart rock with APSS or APUS consists of one or two

magnet(s) placed inside an organic glass ball (inside ball), an outside organic glass ball,

liquid filled in between the two balls, and a concrete shell encasement. As the type and

number of magnet are determined, the determination of the diameter of two balls and the

liquid selection are aimed to realize the unique orientation of magnet. The optimum

diameter of two balls and liquid can not only realize the unique orientation, but also meet

the size and density of a concrete encased smart rock determined from the hydraulic

conditions at different bridge sites.

The selection of ball diameter depends upon three factors: commercial availability

of casting molds for two halves of a concrete ball, smart rock size, and floating

requirement of the inside ball with negligible friction. To ensure that the inside ball can

float in the liquid, the average density of the inside ball with the embedded magnet and

other components must be slightly less than that of the liquid. For an APSS or APUS

with one N42 magnet, an inside ball of 20 cm in diameter was considered. In this case,

the mass of the inside ball is equal to the sum of the magnet (3.06 kg), organic glass ball

and copper beads (total 0.5 kg), and glue and level indicator (negligible). That is,

ρ0(π)(0.2)3/6 = 3.06+0.5 or ρ0=850 kg/m3, which is less than water density (1000 kg/m3).

Therefore, an inner diameter of 20 cm is a viable choice for the inside ball. The inner

diameter of the outside ball can be approximately selected to be 21 cm, which will leave a
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sufficient space for lubrication liquid between the inside and outside balls. For an APUS

with two N42 magnets or one N45 magnet, the inside ball of 25 cm is considered as the

total mass of the inside ball is 6.82 kg (6.12 kg of two N42 magnets and 0.7 kg of total

weight of glass ball, glue and level indication) and the density of inside ball is 834 kg/m3.

The outside ball is selected as 28 cm for commercial available.

The liquid between the inside and outside balls must be selected such that the

inside ball with the magnet can always float without inducing any notable friction force

on the inside ball as it rotates inside the outside ball. For a 20 cm or 25 cm-diameter

inside ball, the liquid density must exceed 850 kg/m3 and 834 kg/m3. Although water is a

viable candidate in terms of density and nontoxicity requirements, water does not provide

sufficient lubrication between the two balls. Lubrication oil is good for minimum friction

but insufficient in mass density of the inside ball floating requirement. Consequently,

propylene glycol with a mass density of 1040 kg/m3 is chosen for satisfactory lubrication

and nontoxicity requirements.

2.3.7. Fabrication of APSS or APUS. To fabricate an APSS as shown in

Figure 2.9 (a), a level indicator with bubble was first attached and glued on one side of a

magnet. The opposite side of the magnet was glued to the bottom of half an inside ball

with attached copper beads for weight balance. The other half of the inside ball was

attached and sealed to complete the inside ball. The complete inside ball was then placed

in half of a larger ball, and covered and sealed by the other half to complete the outside

ball. Next, a 1-cm-diameter hole was drilled on the outside ball and propylene glycol

liquid was injected into the outside ball until the inside ball completely floated and the

top of the inside ball was in contact with the outside ball to avoid a large drift of the

inside ball. Finally, the injection hole was sealed by a small piece of plastic with

adhesives.

For the fabrication of an APUS prototype as shown in Figures 2.9 (b) and 2.9 (c)

with two stacked N42 magnets and one N45 magnet, respectively, a high-precision level

indicator was glued to the top face (South or North pole) of a magnet. The bottom face

(North or South Pole) of the magnet was glued to the bottom of half an inside ball.

Adhesives were used as needed to provide unbalanced weights. The remaining

fabrication steps for the APUS are the same as those for an APSS.
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Figure 2.9.  Prototype: (a) APSS with one N42 magnet, (b) APUS with two stacked N42
magnets, and (c) APUS with one N45 magnet.

2.3.8. Effect of deposit resetting on magnetic field. In practice, a scour hole is

created due to deposit erosion but may be refilled over time. The smart rocks rolling

down to the bottom of the scour hole may be covered by the refilling deposits. Whether

deposit resetting affects the measurement of magnetic fields was investigated at the

Gasconade River Bridge site.

As shown in Figure 2.10, a 1-m deep hole was excavated approximately 10 m

away from a bridge pier. A magnet was first wrapped with a plastic bag that was tied with

a rope, and then placed into the bottom of the hole. The rope was used to pull the magnet

out of the refilled hole after the test was over. The two sensors (F1 and F2) of a

magnetometer were fixed on the top of two wood poles that were inserted into the ground

on two sides of the hole. The magnetometer was set in between the two sensors. Another

wood pole was placed next to the magnet with marks in 0.5 m interval up to 1.5 m to

measure the height of the refilling deposits. As indicated in Figure 2.11, the

measurements were first taken with no deposits, then with the excavated soils refilled to

the 0.5 m and 1.0 m marks, and finally with additional deposits piled up to 1.5 m.

Table 2.2 lists the measured intensity of magnet’s and ambient magnetic fields. It

can be seen from Table 2.2 that the maximum variation of the intensities measured for

deposits refilled to various heights is 0 nT and 10 nT at F1 and F2, respectively. These

variations are significantly less than 100 nT, the level of intensity change that begins to

influence the localization accuracy of the magnet. These variations may be caused by the

change in Earth's magnetic field at different times of measurement or by other

disturbances on the sensor head in the process of deposits refilling.
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Figure 2.10. Overall arrangement of resetting tests.

Figure 2.11. Deposits refilled to various heights: (a) 0.0 m, (b) 0.5 m, (c) 1.0 m, and (d)
1.5 m.

Table 2.2. Intensity at various deposit heights

Deposit Height (m)
Intensity (104 nT)
F1 F2

0.0 5.087 5.073
0.5 5.087 5.073
1.0 5.087 5.072
1.5 5.087 5.072

(a) (b)

(c) (d)
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Intensity (104 nT)
F1 F2

0.0 5.087 5.073
0.5 5.087 5.073
1.0 5.087 5.072
1.5 5.087 5.072
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2.3.9. Effect of steel reinforcement on smart rock operation. An attempt was

made to keep the two poles of a magnet aligned vertically during measurements so that

the magnet orientation is known in prior and the localization of the magnet becomes

simplified. One concern to this effort in practical applications is the potential influence of

the ferromagnetic substances in bridge piers or abutments. Therefore, a simple field test

was carried out to rule out this possibility.

Figures 2.12 and 2.13 show the APUS prototype placed next to a bridge pier and

on the bridge footing, respectively. It can be seen from Figures 2.12 and 2.13 that the

bubble slightly deviated from the center of a high-precision level, indicating an

inclination angle of less than 0.5º and thus little effect on the localization of the APUS. It

was verified during the field tests that the bubble remained in the center of a high-

precision level attached on the APUS when placed at least 10 m away from the bridge

pier and footing.

Figure 2.12. The APUS prototype placed next to a bridge pier.

Figure 2.13. The APUS prototype placed on a bridge footing.
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2.3.10. Concrete encasement of smart rocks. For field deployment at bridge

sites, each APUS smart rock was cast in a spherical concrete encasement. The smart rock

with concrete encasement as schematically shown in Figure 2.14 was cast in a 36.8 cm-

diameter mold. The total density of the smart rock is ρs = [(0.283 m3) (850 kg/m3) +

(0.3683 m3-0.283 m3)(2000 kg/m3)] / 0.3683 or ρs =1495 kg/m3, which is appropriate for all

three bridge sites.

Figure 2.14. Schematic view of concrete encasement: (a) APUS with one N45 magnet,
and (b) APUS with two stacked N42 magnets.

The mix proportion of concrete was selected to be: water = 288 kg/m3, cement=

640 kg/m3, sand (diameter = 4.75 mm) = 1023 kg/m3, fiber = 2 kg/m3 and water reducer

admixture = 8 kg/m3. The concrete fiber (FORTA ULTRA-NET) was made of virgin

homopolymer polypropylene and came in a collated fibrillated twisted bundle, which is

often used to reduce plastic and hardened concrete shrinkage, improve impact strength,

and increase fatigue resistance and concrete toughness. A rope across the outside ball and

concrete encasement was tied around the stiffener of two halves of the outside ball and

used to pull the smart rock into its final position during field deployment and mark the

rock location after the deployment. The four-step fabrication process of concrete

encasement is shown in Figure 2.15: 1) preparing fiber reinforced concrete; 2) pouring a

small amount of concrete into the bottom half of a plastic mold, placing and pushing an

APUS into the concrete, and covering the APUS with the top half of the mold; 3) filling

R2=14.0 cm R1=
12

.5
cm

N

S

Level Bubble

R3=18.4 cm

R2=14.0 cm R1=
12

.5
cm

N

S

Level Bubble

R3=18.4 cm

(a) (b)
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the mold with concrete while tapping the mold with a hammer to remove potential air

bubbles; and 4) removing the mold once concrete is set in one day and putting the smart

rock under water to cure for 14 days.

Figure 2.15. Four-step fabrication of concrete encasement: (1) preparing fiber reinforced
concrete, (b) placing an APUS into concrete and mold, (c) filling the mold with concrete,

and (d) curing the concrete encasement in water for 14 Days.

2.4. SUMMARY

In this section, the working principle of the smart rock technology was introduced

for the monitoring of maximum scour depth and riprap effectiveness. Three types of

smart rocks (AOS, APSS, and APUS) were proposed, designed, and prototyped. The

design guidelines of smart rocks were developed. The equation for critical flow velocity

in HEC18 was mainly used to establish the relationship between the size and density of

smart rocks based on their incipient motion. The equation was applied into three bridge

sites in the states of California and Missouri. The size of smart rocks was first determined

to meet the requirements for fabrication and measurement. The density of smart rocks

was calculated from their incipient motion.

(a) (b)

(c) (d)
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The effect of resetting deposits on the magnetic field near the Gasconade River

Bridge site was tested. To this end, a hole was excavated near a bridge pier, a magnet was

placed at the bottom of the hole and covered by deposits to various heights, and the

intensity of the magnetic field of the magnet and other ferromagnetic substances were

measured at two fixed locations. As expected, the resetting deposits had little effect on

the magnetic field measurement. In addition, whether steel reinforcement in a bridge pier

would affect the magnetic measurement was investigated. Based on the field tests, no

obvious change was observed in the orientation of a magnet when placed near a bridge

pier with steel reinforcement.

The final design of smart rocks was a sphere of 0.368 m in diameter and 1495

kg/m3 in density, which was determined by multiplying a design factor by the density

calculated from the analysis of incipient motion. The design factor was introduced to take

into account the uncertainties about the hydraulic parameters and the empirical equation

for critical velocity. A factor of 1.2 was considered for bridge sites with detailed

hydraulic analysis and 1.3 for bridge sites with no hydraulic analysis. A gravity-oriented

magnet was embedded inside each smart rock so that the pole direction of the magnet

would be known in priori and remained vertical during measurements. When the sensors

of a magnetometer are placed vertically, the gravity-oriented magnet also results in the

most sensitive range of measurement. The designed smart rocks were then prototyped as

a concrete encasement in applications.
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3. LOCALIZATION OF A SINGLE SMART ROCK IN UNIFORM AMBIENT
MAGNETIC FIELD

3.1. INTRODUCTION

Tracing a magnet from its magnetic field has been widely used in medical science

to differentiate human bodies [85]. A tiny magnet simplified as a dipole with non-

invasive and non-wire power is employed to generate the magnetic strength around a

human body. The dipole can be positioned by an inverse calculation of a mathematic

function, thus leading to the change of the human body through continuous monitoring.

Similarly, a permanent magnet as the core of a smart rock would be simplified as a dipole

to establish a mathematical relationship between the magnetic field and the position of

the magnet. A single smart rock placed in a uniform ambient magnetic field (due to the

Earth only) is localized in order to determine the movement of the rock in scour

monitoring application. Two types of smart rock prototypes, Arbitrarily Oriented System

(AOS) and Automatically Pointing to South System (APSS) developed in Section 2, are

considered as models of the smart rocks. The localization mechanism for AOS and APSS

is introduced and analyzed by measuring the ambient magnetic field of the Earth and a

combined magnetic field of the Earth and the smart rock. The magnetic field parameters

of the magnet and the Earth are first evaluated by an approach proposed in this section.

The proposed approach and the localization algorithm are then validated at an open site

experimentally for two types of smart rocks with AOS and APSS, respectively. Finally,

an application example is conducted using an APSS to simulate the movement of the

smart rock in practical application.

3.2. THE MAGNETIC FIELD OF A PERMANENT MAGNET

The magnetic field of a permanent magnet can be numerically solved using an

equivalent magnetic charge method [86], an Amperian current method [87] and the finite

element method. The equivalent charge and current methods are used to derive the

analytical solution of permanent magnets in simple shape while the finite element method

is used to address the integral or differential equation expressed for permanent magnets

with intricate shapes. Also known as the scalar magnetic potential method in engineering

applications, the equivalent charge method employs the key concept of an imaginary
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magnetic charger and its surface density. The magnetic field of a permanent magnet is

then calculated by superimposing the magnetic fields generated by all magnetic chargers.

The Amperian current method, also referred to as the magnetic vector potential method,

deals with the circular electric current with a certain density that exists in a permanent

magnet. Specifically, the inner circular electric current is canceled out for a uniform

magnetization of the magnet. However, a certain surface current density still exists in the

boundary of the magnet. For example, the uniformly magnetized cylinder magnet has the

cylindrical surface current that is equal to the circular current loops uniformly distributed

along the cylinder length. Thus, the magnetic field generated in space from a magnet can

be computed by integrating the magnetic field produced from each circular electric

current. These two equivalent models involve differential equations derived from the

Maxwell's equations with scalar magnetic potential and magnetic vector potential,

respectively. Numerical approaches are then adopted to solve the differential equations

for the magnetic field in space.

In this section, a cylindrical or disc permanent magnet is considered. The

Amperian current model is employed to represent and calculate the magnetic field of the

cylindrical magnet since it is easier than the magnetic charge model in terms of numerical

calculation. An idealized solenoid with strictly azimuthal current in a thin sheet wrapped

around a right circular cylinder [88] can serve as a better model of a permanent

cylindrical magnet, provided that its magnetization is sufficiently uniform/homogeneous.

The ideal solenoid was treated as a stack of loops to calculate its magnetic field by a

straightforward integration of circular current loop that is analytically expressed in

elliptic integrals [88]. The exact solution of the solenoid was developed in a simple and

efficient way with a single function and a generalized complete elliptic integral. In terms

of computation, the simplified point dipole model of an ideal solenoid with finite length

is quite simple and fast [88]. The simplified model is valid when the distance between a

point of interest and the solenoid significantly exceeds the size of the solenoid or the

permanent magnet.

The localization of a permanent magnet is an inverse problem from the measured

magnetic field to the source magnet [89]. The magnetic field signals generated by the

magnetic dipole can be measured by magnetometers at various spatial points around the
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object including the dipole. The positions of these spatial points can also be surveyed.

The localization parameters such as positions and orientation of the dipole can be

computed by solving a high-order nonlinear function with an appropriate optimization

algorithm [90-92]. The non-linear optimization algorithms, such as Powell's [93],

Newton's method [91], Levenberg-Marquardt (LM) [89, 92-96], genetic algorithm [97],

and particle swarm optimizer [97, 98], the linear optimization algorithm [99], the

combined nonlinear (LM) and linear algorithm [100], and the Random Complex

Algorithm (RCA) [101] were investigated, each having its advantages and shortcomings.

In this study, a magnetic dipole was also used as the simplification of a cylindrical

magnet since the measurement points are far away from the magnet.

3.2.1. Mathematic Expression for a Cylindrical Magnet. Consider a

disc/cylinder magnet of 2a in diameter and 2b in length in a local cylindrical coordinate

system as shown in Figure 3.1. Here, the origin of the coordinate system is located at the

centroid of the magnet, y axis represents the magnetized direction from South Pole to

North Pole inside the magnet, and ρ axis represents the radial direction perpendicular to

the y axis.

Figure 3.1. A cylinder magnet in a local cylindrical coordinate system.

The magnetic field induced by the magnet is axis-symmetric about the centerline

of the magnet. It can be represented by a vector Bm (y, ρ) at any point P. The magnetic

field vector can be decomposed into a longitudinal component Bmy and a radial

component Bmρ. When the radial coordinate ρ at Point P is significantly larger than the

2b

2a
Bmρ

Bmy

P(y, ρ)

r

y

ρ

N
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radius a of the magnet or the longitudinal coordinate y is significantly larger than half of

the magnet length b, the magnitudes Bmy and Bmρ of two components of the magnetic field

vector can be approximated by [88]:

2 2
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B y k
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(3.1a)

2 2( , ) ( , ) ( , )m my mB y B y B y    (3.1b)

where 0 / 4k    is a coefficient related to the strength of the magnet, μ0 is the

permeability of vacuum in T·m/A, and μ is the magnetic moment of the magnet. These

parameters are either obtained from the manufacturers (e.g. technical specification of

permanent magnets) or evaluated by the calibration test developed in this study.

3.2.2. Mathematic Expression in Global Cartesian Coordinate System.

As shown in Figure. 3.2, the local Cartesian coordinate system (p-xyz) is originated at the

center of the cylindrical magnet and fixed to the magnet. The y axis is along the thickness

direction from South to North Pole of the magnet. Since it moves together with the

magnet, the local coordinate system cannot be used to define the position of the magnet.

Therefore, a global Cartesian coordinate system O-XYZ is introduced and fixed in space.

Determined by a compass, Y-axis points to the North Pole of the Earth’s magnetic field

that has a declination angle with the geographical South Pole. Then, X-axis is

perpendicular to Y-axis and has the declination angle with the geographic west and Z-

axis is determined according to the right-hand rule as vertically upward. For convenience,

the Y-axis is simply referred to the geographical south and labeled as Y (South), and the

X-axis to the geographical west and labeled as X (West) as shown in Figure 3.2. The

center of the magnet is designated as Point P (XM, YM, ZM) at global coordinates (XM, YM,

ZM) and as Point p (0, 0, 0) at local coordinates (0, 0, 0). An arbitrary point in space is

designated as Point q (xi, yi, zi) in the local coordinate system and Point Qi (Xi, Yi, Zi) in

the global coordinate system. The magnetic field expressed in Eq. (3.1) in the local

coordinate system must be translated to the global coordinate system in order to be

combined with the magnetic fields generated by other sources.
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Figure 3.2. Global versus local Cartesian coordinate systems.

In the local coordinate system (p-xyz) as shown in Figure 3.2, the magnetic field

intensity vector at an arbitrary point q(xi, yi, zi) can be written as Bi=(Bxi, Byi, Bzi). The

two components of the magnetic field generated by a magnet are given in Eq. (3.1). The

radial component can be further decomposed into x- and z-components. The x-, y- and z-

components of the magnetic flux at point q in the p-xyz coordinate system can then be

expressed into:
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2 2 2
i i ir x y z   (3.2b)

2 2 2
xi yi ziB B B B   (3.2c)

In order to transfer the magnetic field components from the local coordinate to the

global coordinate, the global coordinate system must be first rotated at its origin to

become parallel to the local coordinate system and then moved translationally to the local

coordinate system. First, consider three Euler angles, α∈[0,2π], β∈[0,2π], and γ∈[0,2π]

about X-, Y-, and Z-axis following the right-hand rule. A rotation matrix from the XYZ

coordinate system to the xyz coordinate system can be expressed into:

Y(South)
X(West)

Z

P (XM, YM, ZM)

z
y

x
O

Qi (Xi ,Yi ,Zi)

p (0, 0, 0)

qi (xi , yi , zi)
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R (3.3)

Then, consider (XM, YM, ZM) as the global coordinate of the origin of the local

coordinate system. After translational movement from the global to local coordinate

system, the local coordinate at Point Qi can be derived as:
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R (3.4)

According to the vector rotation transformation R in Eq. (3.3), the magnetic field

intensity at any point Qi (Xi, Yi, Zi) around the magnetic dipole can be written as Bi=(BXi,

BYi, BZi) in the global coordinate system and can be related to that in the local coordinate

system by:

5

2 2 2
1 1

5

5

3

2

3

i i

Xi xi

i i i
Yi yi

Zi zi
i i

x y
k

rB B
y x z

B B k
r

B B z y
 k

r

 

  
    
           

           
 

R R (3.5a)

2 2 2
i i ir x y z   (3.5b)

2 2 2
i Xi Yi ZiB B B B   (3.5c)

By substituting Eqs. (3.3) and (3.4) into Eq. 3.5, the three components (BXi, BYi,

BZi) of the magnetic field at an arbitrary point can be completely represented by its

relative position to the magnet in the global coordinate system. In general, six parameters

are required to define the location of a magnet: position (XM, YM, ZM) and orientation that

is represented by a unit vector of y-axis in the global coordinate system, ny = (l, m, n)T.

Since the flux intensity is invariant to a rotation of the magnet about y-axis, the

orientation of the magnet can be uniquely determined by the unit vector of y-axis.

Considering the constraint on the directional cosines of any unit vector, l2 + m2 + n2 = 1,

only five unknowns are required to be determined for magnet localization in theory. In

practice, however, the magnetic field generated from the magnet is to be combined with
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those from other sources that are not axis-symmetric, the axis-symmetric property of the

magnet is not considered in the following derivation.

As indicated in Eq. (3.5a), when left multiplied by R-1, a unit vector of y-axis in

the local coordinate system, (0, 1, 0)T, becomes the y-axis in the global coordinate system,

represented by (l, m, n)T. Therefore, the second column of R-1 (corresponding to the

second row of the rotation matrix R since R-1=RT) is equal to the orientation vector (l, m,

n)T. That is, l = sin α sin β cos γ - cos α sin γ, m = sin α sin β sin γ + cos α cos γ, and n =

sin α cos β. Therefore, solving for the directional cosines l, m, and n is equivalent to

solving for the Euler angels α, β, and γ.

3.3. LOCALIZATION PRINCIPLE

The scalar magnetometer G858 used in the early part of this study measures a

total intensity of the magnetic fields of the Earth, the magnet, and nearby ferromagnetic

substances. At any point, the magnitude and direction of a geomagnetic vector can be

determined according to its longitude and latitude. The magnitude BE can be measured

from the magnetometer G858. The direction is described by a dip angle θ of the Earth's

magnetic field lines with a horizontal plane and the hemisphere in which the investigated

site is located. The dip angle can be either evaluated by inputting the longitude and

latitude of a certain point to the software provided together with the magnetometer, or

computed using the approach developed in this study. When the nearby substances are

neglected at an open site and the Earth's magnetic field is assumed to be unchanged over

time and in a small space of interest, the total magnetic field intensity B//i depends upon

the Earth’s magnetic field intensity BE, the dip angle θ, and the coefficient k of the

magnet in addition to the coordinates (XM, YM, ZM, α, β, γ). That is, B//i = B//i (BE, θ, k, XM,

YM, ZM, α, β, γ).

3.3.1. Localization of AOS. As shown in Figure 3.3, the geomagnetic field

vector, BE, is parallel to the YOZ plane in the XYZ Cartesian coordinate system. Its

direction depends on whether the investigated site is located in north or south hemisphere

of the Earth. Since the project (bridge) sites in this study are located in North America,

the geomagnetic field vector approximately points to the geographical North and faces to

the ground with a corresponding dip angle of the field site. Therefore, the Earth’s
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magnetic field vector is BE = (0, -BE cosθ, -BE sinθ)T in the global coordinate system. The

total magnetic field intensity vector, B//i, at an arbitrary point Qi can then be expressed

into:

   2 22
/ / ( ) ( cos ) ( sin )i Xi Yi E Zi EB B B B B B        (3.6)

Note that, the magnitude of BE is measured by means of the magnetometer prior

to the deployment of the magnet at a project site. Given the coefficients k and θ and the

Earth’s magnetic intensity BE for the project site, the total magnetic intensity of the Earth

and a magnet, B//i, at any point Qi (Xi, Yi, Zi) is a function of (XM, YM, ZM) and (α, β, γ)

only. To determine the location and orientation (6 parameters) of a magnet,

measurements must be taken at a minimum of six stations in practical applications.

Figure 3.3. The magnetic field of an AOS.

Eq. (3.6) is a high-order nonlinear function of the 6 location and orientation

parameters of a magnet. To solve for the parameters (XM, YM, ZM, α, β, γ), a nonlinear

optimization algorithm is developed based on an objective error function that represents

the difference between the predicted and measured magnetic field intensities. Let a N

number of measurements, B//i
(M) (i=1, 2, …, n), be taken at n stations Qi (Xi, Yi, Zi) (i =1,

2, …, n). At each station, the theoretically predicted intensity B//i
(P) = B//i can be

calculated from Eqs. (3.4) - (3.6). Therefore, the square-root-of-the-sum-of-the-squared

(SRSS) error between the calculated intensity B//i
(P) and the measured intensity B//i

(M),

( , , , , , )M M MJ X Y Z    , can be evaluated by:
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The objective error J is minimized to solve for the unknown location and

orientation of the magnet embedded in a smart rock. Specifically, six equations will be

formulated by taking the derivative of J with respect to any one of the six unknown

parameters. Multiple solutions may be obtained from the high-order nonlinear equations

due to unknown orientations. Engineering judgment must be exercised to select an

appropriate solution in practical application based on the previous location and

orientation of the magnet. Therefore, AOS is not an ideal candidate for the development

of smart rocks in practical applications.

3.3.2. Localization of APSS. In an APSS, the y-axis from S to N pole points to

the opposite direction of the South. Therefore, α = π, β = 0, and γ = 0. Figure 3.4 shows

an APSS located at Point P in the global coordinate system XYZ. The total magnetic

field intensity B//i as shown in Eq. (3.6) at an arbitrary point Qi is significantly simplified

into a function of XM, YM, and ZM given the Earth’s magnetic field intensity BE, the dip

angle θ, and the coefficient k of the magnet. By substituting the rotation matrix in Eq.

(3.3) and the relation in Eq. (3.4) into Eq. (3.5), the three components (BXi, BYi, BZi) in Eq.

(3.6) can be expressed into:
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(3.8)

The total magnetic field intensity B//i for an APSS is then obtained by substituting

Eq. (3.8) into Eq. (3.6). The SRSS error in Eq. (3.7) is also reduced into J (XM, YM, ZM) in

which B//i
(P) = B//i can be evaluated by Eq. (3.6). As such, only three unknown parameters

must be solved for localization of the magnet.
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Figure 3.4. The magnetic field of an APSS.

For both AOS and APSS, the sequential quadratic programming (SQP) algorithm

[102] was used to iteratively find the optimization solution for the position of the magnet

from the high-order nonlinear equation sets. The algorithm was implemented in

MATLAB through the use of Fmincon code for non-linearly constrained optimization

problems. It has been proven to be among the most effective general algorithm currently

available.

3.4. DETERMINATION OF THE MAGNET LOCATION IN OPEN FIELD

A field test was firstly carried out in an open field with parallel magnetic lines of

the Earth magnetic field located in the Ber Juan Park, Rolla, MO to validate the

feasibility of the magnet localization algorithm.

3.4.1. Experimental Layout. The test layout is shown in Figure 3.5(a). The

APSS or AOS was located at the origin of the Cartesian Coordinate O-XYZ as shown in

Figure 3.5 (b). To locate APSS or AOS, a sensor head of G858 Magnetometer [103] was

separately stationed at Q1, Q2, Q3 …, Q25, Q26 and Q27 as shown schematically in Figure

3.5 (c). The selection of the 27 points for the measurements of the total magnetic

intensity and X-, Y-, Z- coordinate considered the influence of the inclination angle and

distance on the intensity. Specifically, the measurement points were selected with a radial

distance of 1.5 m and 5 m from the magnet. In addition, the wooden poles with various

heights from 0.2 m to 1.0 m with an increment of 0.1 m were used to taking into account
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the impact of the inclination angle. A total station was set up at a far distance to survey

the coordinates of APSS, AOS and 27 sensor positions with a prism placed on top of each

wooden pole. The coordinates surveyed from the total station were then transferred to the

coordinate system O-XYZ as shown in Figure. 3.5 (c).

Figure 3.5. Field tests in Ber Juan Park, Rolla, MO: (a) test setup and layout, (b) layout
of sensor and magnet, and (c) schematic view of measurement points.

3.4.2. The Earth Magnetic Field Intensity BE and Coefficients k and θ. The

Earth’s magnetic field intensity, BE, changes from one place to another and the

coefficient of the magnet may change slowly over time. Therefore, k and θ must be

evaluated for a specific study. The Earth’s magnetic field lines are considered to be

parallel at the test site without any ferromagnetic structures. Considering the geographical

location in Rolla, MO, with latitude and longitude coordinates being 37°57ʹ12ʺN and
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91°45ʹ27ʺW, respectively, and a magnet pointing due geographical south of the Earth,

Figure 3.4 illustrates the XYZ coordinate system and the relative directions of the

magnetic fields of the Earth and the magnet.

3.4.2.1 Earth's magnetic field intensity BE. The magnetic field intensity of the

Earth was first evaluated with a series of field tests. To this end, the open field was

selected to avoid the potential effect of electric lines, train tracks, and other ferromagnetic

substances. During the tests, mobile phones and magnets were taken far away from the

magnetometer sensor heads. Based on 15 measurements, the average Earth’s field

intensity at the field test site was found to be 52342 Nano Tesla (or nT) with a standard

deviation of 0.23 nT.

3.4.2.2 Coefficient k and θ. The coefficient k and the inclination angle θ are

related by Eq. (3.6) when the predicted total magnetic field intensity B//i is equal to the

measured intensity at each measurement point. A trial-and-error method was used to

determine the k and θ in three steps from n sets of calibration test data collected at the test

site, each including the total magnetic field intensity as a function of the XYZ

coordinates. In Step 1, k is assumed to vary from 36000 to 48000 with a step size of 50

based on manufacturers’ data for various magnets. For each k value, θi (i=1, 2,…, or n)

was calculated with a set of the test data (intensity and coordinate) from the equality of

the predicted and the measured intensities. In Step 2, the n numbers of θi were used to

determine the unbiased mean and standard deviation:

1

1 n
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(3.9)

In Step 3, the k value corresponding to the minimum standard deviation and its

corresponding average  value is determined. They contributed to the least-squared error

in comparison with the measured data as specified in Eq. (3.7).

A calibration test was conducted to determine the k and θ at the same test site with

the Cartesian Coordinate System O-XYZ defined as Y in South direction, X in West

direction and Z in vertically upward direction as shown in Figure 3.6 (a, b). The APSS

and AOS were adopted to calibrate the magnet coefficient and the dip angle of the Earth.

They were placed separately at the origin to generate the magnetic field around them. A
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total of 21 points, labeled as N1, N2, …, and N21 on the top of wood poles of various

heights, were selected in the distance range of 1.3 m to 3.0 m along the Y-axis. The total

station as shown in Figure 3.5 (a) was employed to survey the 21 calibration points. The

AOS was achieved by placing a magnet in half a plastic ball that floated on water in a

bucket as shown in Figure 3.6 (a). A high-precision level with an accuracy of 0.025o was

placed on top of the AOS to keep the axis of the magnet in horizontal plane by weight

balance.

Figure 3.6. Calibration test: (a) experimental setup and (b) relative locations of the
magnet and measurement points in horizontal plane.

Based on a preliminary sensitivity analysis in MATLAB, 8 out of the 21 data sets

from the APSS and AOS, as listed in Table 3.1, were chosen to evaluate the k and θ. Note

that MAPSS and MAOS in Table 3.1 represent the magnets in the APSS and AOS. The first

four points were located on the plus Y-axis side and the remaining four on the minus Y-

axis side. In the case of the APSS, eight inclination angles were related each coefficient k

N1N12N13N21
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as shown in Figure 3.7 (a) using the trial-and-error method. Their corresponding unbiased

standard deviation σ is presented in Figure 3.7 (b). It can be seen from Figure 3.7 that the

standard deviation is a minimum when the eight θ values are nearly equal. Specifically,

the eight θ values are 67.3º, 67.9º, 67.8º, 68.0º, 67.5º, 67.3º, 68.1º, and 67.6º when k =

42542 nT·m3. The mean and standard deviation of θ values are 67.7º and 0.34º,

respectively. The coefficient of variation of θ is 0.340°/67.7° = 0.42%.

Table 3.1. Coordinates and total magnetic field intensities at selected points

APSS AOS

Xi (m) Yi (m) Zi (m) BAPSS (104 nT) Xi (m) Yi (m) Zi (m) BAOS (104 nT)

MAPSS 0.00 0.00 0.00 NA MAOS 0.00 0.00 0.00 N/A

N2 -0.03 -2.30 1.32 5.086 N1 -0.03 -2.38 1.42 5.102
N3 -0.04 -2.23 1.23 5.081 N3 -0.04 -2.23 1.19 5.098
N7 -0.16 -1.73 1.43 4.858 N7 -0.16 -1.73 1.39 4.873
N9 -0.19 -1.61 1.22 4.787 N9 -0.19 -1.61 1.19 4.815

N16 0.12 1.94 0.61 6.006 N16 0.12 1.94 0.58 6.006
N18 0.17 2.10 0.49 5.818 N18 0.17 2.10 0.45 5.807
N20 -0.22 3.09 0.81 5.413 N19 -0.20 2.97 0.84 5.439
N21 -0.23 3.17 0.70 5.394 N21 -0.23 3.17 0.67 5.394

Figure 3.7. Evaluation of θ and k values from the APSS: (a) eight θ samples for each k,
and (b) standard deviation of eight θ samples as a function of k value.

Similarly, in the case of the AOS, the eight curves shown in Figure 3.8 (a) provide

a k value of 41890 nT·m3 corresponding to the minimum standard deviation as presented

in Figure 3.8 (b). In this case, the eight θ values are 66.9º, 66.4º, 66.2º, 66.0 º, 66.7º, 66.8º,

66.3º, and 66.1º with their mean and standard deviation of 66.4º and 0.32º, respectively.

The coefficient of variation of θ is 0.322°/66.4° = 0.48%. The differences in the

(a) (b)
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evaluation of k and θ were likely caused by the approximate trial-and-error method, the

imperfect alignment between the Y-axis and y-axis, the small angle deviation from due

south of the APSS, and the misalignment of the prism and the magnetometer sensor for

coordinate measurements.

Figure 3.8. Evaluation of θ and k values from the AOS: (a) eight θ samples for each k
and (b) standard deviation of eight θ samples as a function of k value.

To sum up, the k values for the APSS and AOS obtained from the calibration test

are 42542 nT·m3 and 41890 nT·m3, respectively. The θ values for the APSS and AOS are

67.7 º and 66.4 º, respectively. Due to low accuracy with the level bubble used on top of

the APSS, an initial angle exists between the axis of the magnet and the horizontal plane.

As a result, the 67.7º is the angle between the dip angle of the Earth's magnetic field and

the axis of the magnet instead of the horizontal plane. On the other hand, a high-precision

level bubble was installed on top of the AOS to ensure that the axis of the magnet aligns

with the horizontal plane. Therefore, θ = 66.4 º is considered as the final inclination angle

of the uniform Earth's magnetic field in the open field.

3.5. RESULTS AND DISCUSSION OF MAGNET LOCALIZATION

In this section, the measured data collected from the test were used to conduct the

localization of AOS with three orientations and the localization of APSS placed at the

origin of the global coordinate system to validate the localization algorithm. Also, the

selection of measurement points was analyzed to determine the effective measurement

points during the test.

(a) (b)



www.manaraa.com

52

3.5.1. Localization of AOS. Table 3.2 shows the coordinates (Xi, Yi, Zi) and

intensity B//i
(M) of the AOS in three orientations OR1, OR2 and OR3, as shown in Figure

3.9, measured at locations Q1 to Q27, respectively. The three orientations were selected

arbitrarily to represent the random rotating of the smart rock in the river. In the

coordinate system O-XYZ as shown in Figure 3.9, the south-to-north pole direction (y-

axis) of the magnet in OR1 points to the northwest & down octant of the coordinate

system while the south-to-north pole direction (y-axis) of the magnet in OR2 and OR3

points to the southeast & up and southwest & up octants, respectively. The coordinate

and orientation of the magnet in each of the three cases (OR1, OR2, OR3) were

determined by first substituting the coordinates of 27 points into Eq. (3.4-3.6) to obtain

the relationship between the predicted total intensity B//i
(P) and the six unknowns, and

then minimizing the objective function in Eq. (3.7) after substituting the corresponding

total intensity B//i
(M) measured to evaluate the six unknowns.

Figure 3.9. Three orientations of the AOS.

Table 3.3 summarizes the predicted and measured coordinates of the magnet in

the AOS, named MAOS, in three orientations (OR1, OR2, and OR3) as well as the SRSS

prediction errors in MAOS location estimation. Since the AOS in each of the three

orientations (OR1, OR2 and OR3) was placed at the origin of the O-XYZ coordinate

system, the ground truth coordinates of the AOS were zero. It can be observed from

Table 3.3 that the SRSS prediction errors in three orientations location are 0.01 m, 0.01 m

(OR1) (OR2)

(OR3)
Y(South)

X(West)

Z

O
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and 0.01 m, respectively. They are pretty small compared to the size of the magnet,

which is about 0.1 m in diameter.

Table 3.2. Measured data for the AOS in three orientations

Sensor Head Xi (m) Yi (m) Zi (m)
Bi

M (104 nT)
OR1 OR2 OR3

Q1 0.64 2.57 0.65 5.265 5.305 5.001
Q2 1.15 3.69 0.25 5.182 5.284 5.180
Q3 1.02 1.58 0.68 5.189 5.486 4.593
Q4 2.03 2.61 0.57 5.170 5.325 5.142
Q5 2.45 1.19 0.74 5.058 5.416 5.153
Q6 3.67 0.80 0.50 5.152 5.314 5.244
Q7 2.29 0.02 0.88 4.918 5.517 5.253
Q8 4.56 0.04 0.22 5.193 5.274 5.254
Q9 3.31 -0.64 0.49 5.138 5.333 5.285
Q10 1.71 -1.11 0.95 4.852 5.581 5.437
Q11 2.28 -2.21 0.65 5.159 5.331 5.293
Q12 2.16 -2.99 0.47 5.203 5.287 5.257
Q13 0.71 -2.10 0.88 5.002 5.504 5.401
Q14 0.48 -3.61 0.81 5.189 5.299 5.244
Q15 -0.59 -2.62 0.95 5.093 5.398 5.312
Q16 -1.83 -4.00 0.32 5.201 5.278 5.218
Q17 -1.78 -2.67 0.59 5.135 5.352 5.249
Q18 -1.06 -1.23 0.40 4.517 6.106 5.766
Q19 -2.75 -1.63 0.66 5.134 5.341 5.297
Q20 -2.46 -0.05 0.91 5.223 5.289 5.447
Q21 -3.98 -0.06 0.14 5.180 5.286 5.269
Q22 -1.34 0.74 0.74 6.129 4.959 5.619
Q23 -3.07 0.94 0.13 5.181 5.317 5.319
Q24 -3.99 2.22 0.22 5.223 5.254 5.257
Q25 -2.35 2.01 0.39 5.264 5.265 5.277
Q26 -0.79 1.99 0.77 5.597 5.111 4.979
Q27 -1.64 3.31 0.32 5.254 5.255 5.217

Table 3.3. Predicted and measured coordinates of the magnet MAOS in three orientations

OR1 OR2 OR3

X (m) Y (m) Z (m) X (m) Y (m) Z (m) X (m) Y (m) Z (m)

Predicted Location -0.01 0.00 0.01 0.00 0.00 -0.01 0.00 0.01 -0.01
Measured Location 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Prediction Error -0.01 0.00 0.01 0.00 0.00 -0.01 0.00 0.01 -0.01
SRSS Error 0.01 0.01 0.01
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Table 3.4 lists the predicted rotation angles α, β and γ and the directional cosines l,

m, and n of the magnet in the AOS in the global coordinate system. The rotation angles (α,

β, γ) adopted for the coordinate transformation are difficult to visualize in space while the

directional cosines (l, m, n) of the magnet represent the angles between the local y-axis

(south-to-north pole direction) and the global axis X (west), Y (south) and Z (up),

respectively.

Table 3.4. Predicted orientations of the AOS in three cases

OR1 (rad) OR2 (rad) OR3 (rad)

Predicted
AOS Orientation

α β γ α β γ α β γ
1.04 3.88 3.12 4.67 3.69 2.77 3.36 3.33 2.59

l m n l m n l m n
0.56 -0.52 -0.64 -0.47 0.23 0.85 0.47 0.86 0.21

3.5.2. Localization of APSS. Similarly, Table 3.5 shows the measured

coordinates (X, Y, Z) of 27 points and their corresponding total magnetic field intensities

of the APSS as well as the SRSS error in location prediction. It can be observed from

Table 3.5 that the SRSS prediction error in location is 0.07 m, which is quite small

compared to the size of the APSS with 0.2 m in diameter of the outside plastic ball. It is

noted that the orientation of magnet in the APSS is known in prior so that the process of

locating the APSS is significantly simpler than that of the AOS. Therefore, the APSS is a

preferable configuration of smart rocks in practical applications.

3.5.3. Analysis for the Selection of Measurement Points. As shown in Figure

3.5 (c), the measurement points were selected between 1.5 m and 5 m distances from the

APSS or AOS placed at the origin of the coordinate system. They were well distributed

around the APSS or AOS in near and far radial distances. Although a minimum of three

measurement points are required for three unknown location parameters of the APSS and

six measurement points for six unknown location parameters of the AOS, more

measurement points lead to a more reliable and accurate estimation of the APSS or AOS

location. Herein, 27 points were initially selected to ensure the convergence and high

accuracy in the estimation of the unknown parameters.

Since the magnetic flux intensity of a permanent magnet decreases in cubic

function with the measurement distance, effective measurements that allow the reverse

estimation of the magnet location must be taken in a certain range of distance. On one
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hand, to simplify the permanent magnet as a dipole in Eq. (3.2), the distance from a field

point to the magnet is at least ten times the size of the magnet or 0.1 m. Considering the

presence of dead zones with the magnetometer used in this study, where the

magnetometer cannot provide the correct magnetic field intensity, the lower limit of

measurement distance is determined to be 1.5 m.

Table 3.5. Predicted and measured data for the APSS location MAPSS

Sensor Head Xi (m) Yi (m) Zi (m) Bi
(M) (104 nT)

Q1 0.64 2.57 0.63 5.450
Q2 1.15 3.69 0.24 5.294
Q3 1.02 1.58 0.67 5.861
Q4 2.03 2.61 0.56 5.309
Q5 2.45 1.19 0.73 5.254
Q6 3.67 0.80 0.49 5.208
Q7 2.29 0.02 0.87 5.116
Q8 4.56 0.04 0.21 5.212
Q9 3.31 -0.64 0.48 5.183
Q10 1.71 -1.11 0.94 4.985
Q11 2.28 -2.21 0.64 5.209
Q12 2.16 -2.99 0.45 5.243
Q13 0.71 -2.10 0.86 5.155
Q14 0.48 -3.61 0.80 5.245
Q15 -0.59 -2.62 0.94 5.199
Q16 -1.83 -4.00 0.31 5.252
Q17 -1.78 -2.67 0.58 5.234
Q18 -1.06 -1.23 0.39 5.239
Q19 -2.75 -1.63 0.65 5.185
Q20 -2.46 -0.05 0.90 5.137
Q21 -3.98 -0.06 0.12 5.200
Q22 -1.34 0.74 0.72 5.629
Q23 -3.07 0.94 0.12 5.200
Q24 -3.99 2.22 0.21 5.229
Q25 -2.35 2.01 0.38 5.281
Q26 -0.79 1.99 0.76 5.730
Q27 -1.64 3.31 0.31 5.297

Predicted Location M(P)
APSS 0.02 0.01 0.07

N/AMeasured Location M(M)
APSS 0.00 0.00 0.00

Location Prediction Error for MAPSS 0.02 0.01 0.07
SRSS Error in Coordinate 0.07 m

On the other hand, the upper limit of measurement distance depends on the

coefficient k, which represents the magnetic strength of the dipole. The larger the
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coefficient k, the stronger the magnetic flux intensity of the permanent magnet at a

certain distance. Therefore, the larger the coefficient k, the further distance the magnetic

flux intensity can be detected with confidence. For the magnets used in the open field

tests, k = 42542 nT·m3 or 41890 nT·m3 determines the upper limit of measurement

distance for effective localization of the magnets. Figure 3.10(a) presents the total

magnetic field intensity as a function of distance along the symmetry axis (Y direction) of

the dipole at five elevations in Z direction. That is, x = 0, 1.5 m ≤ y ≤ 7.0 m, z = 0.3 m,

0.5 m, 0.7 m, 0.9 m and 1.0 m in Eq. (3.6). Obviously, the total intensity decreases

rapidly from 1.5 m to 4.0 m and then slowly afterward. As shown in Figure 3.10(b) for

the zoom-in view, at a low level of 0.3 m in Z direction, the attenuations of the magnetic

intensity from 4.0 m to 5.0 m and from 5.0 m to 6.0 m are 330 nT and 123 nT,

respectively. The decreases in magnetic intensity from 4.0 m to 5.0 m distance are 368 nT,

397 nT, 415 nT and 420 nT for Z = 0.5 m, 0.7 m, 0.9 m and 1.0 m, respectively; the

decreases from 5.0 m to 6.0 m are 154 nT, 166 nT, 176 nT and 180 nT, respectively. In

practical applications, the measured magnetic intensity can deviate from the calculated

intensity by ±200 nT as a result of such combined experimental errors as the deviation of

the sensor position for magnetic intensity measurement, the coordinate deviation of the

measurement points, and the change of the Earth magnetic field because of the solar

storm. Therefore, those attenuations from 5.0 m to 6.0 m at various Z levels, less than

200 nT, are not a sensitive and effective distance range for measurement points’ selection

compared to those attenuation from 4.0 m to 5.0 m larger than 300 nT.

Figure 3.11(a) displays the magnetic field changes along Z direction at three Y

positions (4.0 m, 5.0 m, 6.0 m) in YOZ plane. The magnetic field intensity first increases

from Z= 0 m to Z = 2.0 m and then decreases monotonically with the distance in Z

direction. Figure 3.11(b) shows an amplified observation on the magnetic intensity over

the distance in Z direction. It is also seen from Figure 3.11 (b) that the desirable distance

in Z direction for the collection of sensitive magnetic intensities is less than 5.0 m as

would be between 5 m and 6 m in Y direction for a magnetic field difference of less than

200 nT. The same idea is applicable to the magnetic intensity variation in X direction.

Therefore, the upper limit of 5.0 m for the selection of measurement points was

determined in XOY plane as shown in Figure 3.5 (c).
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Figure 3.10. Magnetic field intensity vs. measurement distance in Y direction: (a) overall
view and (b) zoom-in view.

Figure 3.11. Magnetic field intensity vs. measurement distance in Z direction: (a) overall
and (b) zoom-in view.

3.6. APPLICATION OF THE APSS

As stated previously, the smart rock technology is developed to mainly monitor

the maximum depth of the scour hole around a bridge pier or abutment in real time. Thus,

tracking the movement of a smart rock over time is highly desirable during a flood event.

Another field test was conducted to demonstrate the movement characteristic of a smart

rock with the APSS on a slope and validate the localization method developed in this

study.

3.6.1. Experimental Layout. A natural slope located in the same open field at

Ber Juan Park, Rolla, MO, was chosen as the test site as shown in Figure. 3.12(a). The

natural slope from the top to bottom was used to simulate the movement of the smart rock

in a scour hole. Along the slope eight stops of the APSS were marked as M1 to M8 in

Figure 3.12(a). The eight APSS stops were surrounded by a total of 44 measurement
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points designated as S1, S2… S44, as marked in Figure 3.12(b). A total station was set up

at the origin of the O-XYZ coordinate system with the Y-axis approximately pointed to

the geographic South, the X-axis perpendicular to Y-axis pointed to West, and the Z-axis

pointed up according to the right hand rule. The total station was used to survey the

coordinate of each measurement point and the ground truth coordinate of the APSS. Prior

to the APSS deployment, the magnetometer G858 was employed to measure the uniform

ambient magnetic field intensity. After the APSS had been deployed at each of the eight

positions, the total magnetic field intensity was measured again. For each APSS

deployment, 18 measurement points were selected from 44 points within a radial distance

of 1.5 m and 5.0 m.

Figure 3.12. The APSS and measurement points: (a) test site and (b) schematic view.

When the APSS was placed at M1, each measurement includes the total magnetic

field intensity and its corresponding coordinate in the O-XYZ Cartesian coordinate

system. By minimizing the objective function in Eq. (3.7), the coordinate of M1 was
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predicted as designated as M1’ in Table 3.6. Similarly, the predicted location of the

APSS at M2 to M8 can be determined; they are designated as M2’, M3’, M4’, M5’, M6’,

M7’, and M8’ in Table 3.6.

3.6.2. Results. Table 3.6 shows the measured and predicted locations of the

APSS in the O-XYZ system and the prediction error. It can be seen from Table 3.6 that

the component and SRSS errors for eight locations of the APSS are all less than 13.6 mm,

which is quite small compared to the size of the APSS. Therefore, the accuracy of the

localization algorithm in Eq. (3.7) is sufficient in the uniform ambient magnetic field.

Figure 3.13 shows a graphical presentation of the eight measured and predicted locations

of the APSS on a three-dimensional slope surface. Each pair of the measured and

predicted locations are nearly overlapped. In practical applications, such as monitoring of

a bridge scour process, the APSS is initially deployed at the M1 location and the other

locations from M2 to M8 represent the water flow induced movement of the APSS at

various stops over time.

Table 3.6. Predicted and measured data for the APSS location

Measured Coordinate Predicted Coordinate Prediction Error

Stop X (m) Y (m) Z (m) Stop X' (m) Y' (m) Z' (m) (X-X') (m) (Y-Y') (m) (Z-Z') (m) SRSS (m)

M1 -2.31 -29.44 -0.17 M1’ -2.31 -29.44 -0.15 0.00 0.00 -0.01 0.01

M2 -2.16 -28.63 -0.39 M2’ -2.16 -28.64 -0.39 0.00 0.00 0.00 0.00

M3 -2.28 -27.67 -0.63 M3’ -2.28 -27.68 -0.64 0.00 0.01 0.01 0.01

M4 -2.14 -26.86 -0.84 M4’ -2.14 -26.86 -0.83 0.00 0.00 -0.01 0.01

M5 -2.20 -25.97 -1.09 M5’ -2.20 -25.97 -1.09 0.00 0.00 0.00 0.00

M6 -2.02 -25.15 -1.24 M6’ -2.02 -25.16 -1.24 -0.01 0.00 0.00 0.00

M7 -1.94 -24.25 -1.62 M7’ -1.93 -24.25 -1.63 0.00 0.00 0.01 0.01

M8 -1.84 -22.70 -1.62 M8’ -1.85 -22.70 -1.62 0.00 0.00 0.01 0.01

Figure 3.13. Comparison between the measured and predicted APSS locations.
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3.7. SUMMARY

The smart rock technology offers an alternative to investigate the behavior of

scour development around a bridge pier or abutment and the effectiveness of a riprap

counter measurement. Proper designed smart rocks roll and fall into the scour hole

around the pier or abutment. Their position is thus related to the depth of the scour hole.

The permanent magnet embedded in a smart rock generates the magnetic field that can be

detected by magnetic sensors or a magnetometer. The detected magnetic field intensities

and given magnetometer's position can be utilized to locate the smart rock. In this section,

smart rocks with the AOS and APSS have been demonstrated for the field evaluation of

their localization. The AOS is simple in fabrication and high in localization accuracy.

However, the localization algorithm is complex with six unknowns: three location

coordinates and three orientations of the magnet. The APSS with fixed orientation

reduces unknowns to three location coordinate only, which greatly simplifies the

localization algorithm and improves the computational efficiency without sacrificing the

localization accuracy. Therefore, the APSS is a preferred configuration in practical

applications.

The localization tests in the open field have demonstrated that the magnetic dipole

simplification of a permanent magnet is sufficiently accurate for the localization of smart

rocks with the AOS and APSS. The Earth’s magnetic field in the form of parallel vectors

at an open site cannot be separated from the magnetic field generated from a magnet in

field measurements.

The APSS was applied to simulate the movement of a smart rock in a scour hole

created under water flow in application by placing it at eight stops on a natural slope.

This test further demonstrated the high accuracy and repeatability of the localization of

the APSS at various locations in the same uniform ambient field.
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4. LOCALIZATION OF A SINGLE SMART ROCK IN NON-UNIFORM
AMBIENT MAGNETIC FIELD

4.1. INTRODUCTION

The total magnetic field around a bridge site is affected by a permanent magnet,

the Earth, and any other ferromagnetic substances such as the reinforcement in bridge

piers and deck. Since the magnetic field distribution of other substances is unknown, the

combined effect of the Earth and other substances or the ambient magnetic field at the

bridge site is non-uniform. To enable the localization of smart rocks, the non-uniform

ambient magnetic field intensity must be evaluated accurately.

In this section, the localization algorithms of the AOS and APSS in non-uniform

magnetic field at the bridge site are developed by modifying the algorithms presented in

Section 3. Unlike the Earth’s magnetic field with parallel magnetic lines, the non-uniform

ambient magnetic field makes the direction and intensity of the magnetic field at each

measurement point unknown. Therefore, a custom-built device is designed and built to

detect the ambient magnetic field direction. This device is referred to as the Ambient

Magnetic Field Orientation Device (AMFOD). It can determine inclination and

declination angles of the ambient magnetic field at various measurement points. The

experimental field tests were carried out at the bridge site of Highway 63 over Gasconade

River to demonstrate the localization procedure and validate the localization algorithm

using the AOS and APSS. The magnetometer G858 and the device AMFOD were used to

collect the ambient, total magnetic field intensities and directions, respectively. The

device AMFOD was used to detect the direction of the ambient magnetic field at each

measurement point.

4.2. MATHEMATIC MODEL OF THE MAGNETIC FIELD AT BRIDGE SITE

The magnetic field at a bridge site is a combination of the Earth’s magnetic field

and the field produced by the steel rebar embedded in the bridge pier and deck or the

steel girders. This combination at a local area such as bridge site is designated as the

ambient magnetic field, which is a vector superstition of the Earth’s magnetic field and

the field from ferromagnetic substances such as steel objects. Although the ambient

magnetic field cannot be simply expressed in a mathematical model, the magnitude and
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direction of the ambient magnetic field at any point can be measured by magnetometer

G858 or the custom-built device, respectively.

The local magnetic field generated by a magnet is referred to as magnet’s

magnetic field (MMF). It can be expressed by a mathematic function. The vector

summation of the AMF and MMF forms the total magnetic field as smart rocks are

deployed at bridge sites.

As illustrated in Figure 4.1 in the O-XYZ Cartesian coordinate system, the center

of a magnet is located at Point P (XM, YM and ZM), and an arbitrary measurement station

around the magnet is located at Point Qi (Xi, Yi, and Zi) (i =1 to n). The ambient magnetic

field at Point Qi (Xi, Yi, Zi), is represented by a vector BAi, which is determined by a

magnetic flux density BAi and two angles, θ and φ. The parameter φ in [0, 2π] is the angle

spanned from the X axis to the projected vector of the ambient magnetic field vector BAi

in XOY plane; the parameter θ in [0, π] represents the angle spanned from the projected

vector to BAi. Therefore, the three components (BAXi, BAYi, BAZi) of the ambient magnetic

field along X-, Y-, and Z-directions are:

cos cosAXi AiB B   (4.1a)

cos sinAYi AiB B   (4.1b)

sinAZi AiB B  (4.1c)

Figure 4.1. A magnet and measurement point Qi in the global Cartesian coordinate
system O-XYZ.
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A permanent magnet with uniform magnetization can be modeled as a magnetic

dipole when measurements are taken at a distance from the magnet that is significantly

greater than the largest dimension of the magnet. The magnetic flux density of a magnetic

dipole source is a high-order nonlinear function of the coordinates at a measurement

point. As illustrated in Figure 4.2, the center of the magnet is located at Point P (XM, YM,

ZM) in the global Cartesian coordinate system O-XYZ and p (0, 0, 0) in the local

Cartesian coordinate system p-xyz. Point q (xi, yi, zi) in the local coordinate system and

point Qi (Xi, Yi, Zi) in the global coordinate system represent an arbitrary measurement

point. The magnetic field intensity vector at Point Qi (Xi, Yi, Zi) (i =1 to n) is represented

by BMi and the expressions for its three components (BMXi, BMYi, BMZi) are written as

(repeated for completeness):
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cos cos cos sin sin

sin sin cos cos sin sin sin sin cos cos sin cos

cos sin cos sin sin cos sin sin sin cos cos cos

    
           
           

 
    
   

R (4.2c)

2 2 2
i i ir x y z   (4.2d)

2 2 2
Mi MXi MYi MZiB B B B   (4.2e)

where 0 / 4k    is the a coefficient related to the magnet, μ0 is the magnetic

permeability of the air in T·m/A, μ is the magnetic moment of the dipole produced by the

magnet in T, and α∈[0, 2π], β∈[0, 2π], γ∈[0, 2π] are Euler angles used to derive the

rotation matrix. Let the unit vector of y-axis in the global coordinate system be ny = (l, m,

n)T, which points from South to North pole of the magnet. The vector defines the

orientation of the magnet with the unity constraint represented by l2 + m2 + n2 = 1. It is
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noted that the three components in the second column of the rotation matrix are equal to l,

m and n, respectively.

Figure 4.2. AOS in local and global coordinate systems and the ambient magnetic field.

The total magnetic field intensity B//i at Point Qi from the magnet and the ambient

magnetic field can be expressed into:

2 2 2
/ /i ( ) ( ) ( )MXi AXi MYi AYi MZi AZiB B B B B B B      (4.3)

It depends upon the ambient magnetic field intensity BAi, the θ and φ angles of the

ambient magnetic field, the coefficient k of the magnet, the location (XM, YM, ZM) and

orientation (α, β, γ) of the magnet. That is, B//i = B//i (BAi, θ, φ, k, XM, YM, ZM, α, β, γ, Xi, Yi,

Zi). The ambient magnetic field intensity BAi , the θ and φ angles are measured using the

3-axis magnetometer and custom-built device prior to AOS deployment at a

predetermined site. The coefficient k related to the magnetic moment of the magnet is

obtained from the calibration test or from the properties of the magnet provided by the

manufacturer. Given k, θ , φ and BA at each measurement point (Xi, Yi, Zi) of a project site,

the total magnetic field intensity of the ambient and magnet B//i is a function of (XM, YM,

ZM) and (α, β, γ).

4.3. LOCALIZATION OF AOS

To solve the six parameters (XM, YM, ZM, α, β, γ) in the high-order nonlinear

equations, an objective error function is formulated in the optimization algorithm.
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Assume that N number of measurements, B//i
(M) (i=1, 2, …, n), are taken at N stations

around the AOS (Xi, Yi, and Zi, i =1, 2, …, n) from the magnetometer. At each station, the

theoretically predicted intensity B//i
(P) = B//i can be calculated by combing Eq. (4.2) and

Eq. (4.3). The square-root-of-the-sum-of-the-squared (SRSS) error between the

calculated intensity B//i
(P) and the measured intensity B//i

(M), J(XM, YM, ZM, α, β, γ), can be

expressed into:

( ) ( ) 2

1

( , ,Z , , , ) [ ]
n

P M
M M M i i

i

J X Y B B  


  (4.4)

By minimizing the SRSS error in Eq. (4.4) through a numerical algorithm, the location

and orientation parameters of the magnet can be determined.

4.4. LOCALIZTION OF APSS

As discussed in Section 3, the APSS can be represented by α = π, β = 0, and γ = 0

in the global coordinate system as shown in Figure 4.3. The local xyz coordinate system

with y-axis from the South to North pole of the magnet is identical to the XYZ coordinate

system when rotated counter-clockwise by 180°. In this case, the three components (BMXi,

BMYi, BMZi) of the magnetic field generated from the magnet at the arbitrary point Qi can

be expressed into:
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(4.5)

The total magnetic field intensity B//i at Point Qi for the APSS model is then

obtained by substituting Eq. (4.5) into Eq. (4.3). The SRSS error in Eq. (4.4) is also

simplified into J (XM, YM, ZM) as indicated in Eq. (4.6), in which the theoretically predicted

intensity B//i
(P) = B//i can be evaluated by introducing Eq. (4.5) into Eq. (4.3) and B//i

(M)

(i=1, 2, …, N) are taken at N stations around the magnet.
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( ) ( ) 2

1

( , ,Z ) [ ]
n
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M M M i i

i

J X Y B B


  (4.6)

The sequential quadratic programming (SQP) algorithm implemented in the

Fmincon code in MATLAB was used to find the solution for the minimization of the

SRSS error function in Eq. (4.6).

Figure 4.3. The magnetic field of the APSS and the ambient magnetic field.

4.5. DEVELOPMENT OF AMFOD

The Ambient Magnetic Field Orientation Device (AMFOD) was developed to

determine the direction of the ambient magnetic field at a bridge site. The AMFOD is

composed of an orientation detector (OD), an OD support, a data reading system, two

laser pointers, a high-precision bubble level and a tripod to support the measurement

setup. Figures 4.4(a) and 4.4(b) show a schematic view and a prototype of the AMFOD.

The OD was created based on the APSS model. It was utilized to capture the

direction of the ambient magnetic field at each measurement point in a quite accurate way.

The OD consists of an inside ball and an outside ball, two identical cylindrical hollow

magnets, and liquid filled in between the two balls. The key to the design of the two balls

is to keep the geometrical center of the inside ball aligned with that of the outside ball.

The inside ball and the outside ball were produced by a 3D printer using the Polymeric

Methyl Methacrylate due to their high precision requirement. The two cylindrical hollow

magnets are 19 mm in diameter and 25.4 mm in height with a 2 mm diameter hole

through its center line. The reserved space through the center line of the inside ball was
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designed to place the two cylindrical magnets. The liquid used to make the inside ball

rotate freely is the propylene glycol with a mass density of 1040 kg/m3 to satisfy both

lubrication and nontoxicity requirements.

Figure 4.4. Overall design of AMFOD: (a) schematic view and (b) prototype.

The data reading system is composed of the OD support, the vertical torus for

angle θ reading, and the horizontal turntable for angle φ reading. The accuracy of the data

reading system is 0.1°. The data reading system was made of aluminum alloy without any

ferromagnetic substance.
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Two laser pointers were used in the design of the AMFOD. Laser pointer 1 was

installed on vertical torus to shoot light on a laser acceptor through the hole along the

centerline of the OD. The laser acceptor was fixed on the vertical torus. The light will go

through the magnet, the geometric center of the OD, the center of the vertical torus and

the center of the laser acceptor. Thus, the angle of θ is highlighted by the shooting light

and read by the operator of the equipment. Laser pointer 2 is fixed at the bottom of the

horizontal turntable and aligned with the diameter line of the turntable. The angle φ is

obtained through this horizontal light shooting on a predefined point during a test. The

two laser pointers are made of aluminum alloy and are charged by an external battery.

Hence, the influence from the laser pointers on the magnetic field to be detected is

negligible.

The bubble level made of plastic is placed on top of the horizontal turntable to

ensure that it is indeed horizontal. The accuracy of the level bubble is 0.025°. The

specially-designed tripod is made of carbon fiber that has no effect on the magnetic field

to be measured. The connector between the tripod and the horizontal turntable is made

for easy use for a large number of measurements in field conditions.

4.6. EXPERIMENTAL VALIDATION

In this section, one smart rock with Automatically Pointing to South System

(APSS) and another smart rock Arbitrarily Oriented System (AOS) were tested at the

Gasconade River Bridge site to validate the localization algorithms. The bridge pier for

test was located on the river bank for easy operation.

4.6.1. Evaluation of k, BA, θ and φ. The coefficient k was first evaluated in an

open field (Ber Juan Park, Rolla, MO) before the smart rocks were tested at the bridge

site. For the APSS and AOS, k = 42542 nT·m3 and 41890 nT·m3, respectively.

At the bridge site, the ambient magnetic field lines are no longer in parallel due to

the combined effect of the Earth and other ferromagnetic substances, such as

reinforcement in bridge piers and deck. The ambient magnetic field varies in space and

can be uniquely defined by three parameters (BA, θ and φ) at each measurement point. To

evaluate these parameters, the AMFOD was used to measure the angles θ and φ at each

measurement point in addition to a magnetometer for field intensity measurement.
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4.6.2. Test Setup and Procedure. All tests were conducted near the bridge

pier as shown in Figure 4.5. The bridge foundation was surrounded by a small scour hole

created during previous flood events. As shown in Figure 4.6, three locations of the

APSS or AOS, designated by M1, M2 and M3 in Figure 4.6(a), were selected to take into

account a combination of horizontal positions and depths in bridge scour monitoring. M1,

M2, and M3 were well spaced in horizontal plane. M3 was placed in the scour hole. To

locate the APSS or AOS, a total of 34 measurement points (Q1 to Q34, marked by 34

wooden and plastic poles during actual tests), were selected around M1, M2, and M3.

The sensor head of a G858 Magnetometer was placed on top of each wooden or plastic

pole to measure the ambient and total magnetic intensities for each magnet location. A

total station was used to survey the coordinates of three magnet's locations and 34 sensor

positions as ground true data. A prism was placed at the same location of the sensor head

on top of the wooden poles to ensure that the magnetic field intensity and the coordinates

were collocated. In addition, the AMFOD was set at the 34 points to measure the angles

of θ and φ before the smart rocks were deployed at each location.

Figure 4.5. The bridge pier with a scour hole as a field test site.

A step-by-step test procedure was developed and implemented systematically at

the bridge site. The seven steps involved for the APSS or AOS are detailed below:

(1) Set the XYZ Coordinate System. As shown in Figure 4.6 (a), a point A marked

by a wooden pole was selected far away from the bridge pier to avoid potential

measurement interference by ferromagnetic substances of the bridge pier. Place a high-

precision military compass on the wooden pole to survey the geographical South
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direction, select a point B on the line of the south direction, and check that all of the

measurement points were in the sight of point B. Select point B as the origin and the

direction from A to B as the Y-axis. The X-axis is thus selected pointing to West and the

Z-axis is perpendicular to the XOY plane as shown in Figure 4.6(a).

Figure 4.6. Test setup at the bridge site: (a) schematic view of smart rock and sensor
locations in plane and (b) layout of smart rocks and sensor head.

(2) Select the Locations of Smart Rocks and Sensor Head. As shown in Figure

4.6(a, b), the smart rocks were located from far away to close to the bridge pier in order

to understand the variation of the ambient magnetic field, the angles, and the total

magnetic field. Magnet locations, M1, M2 and M3, were marked by inserting bottle caps
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into the ground for easy placement of smart rocks on the ground and convenient

collection of coordinates. The 34 wooden poles, Q1 to Q34, were distributed around the

M1, M2 and M3 and bounded between the circles with diameter of 1.5 m and 5 m in

order to avoid the dead zone of the magnetometer at each location of smart rocks. Three

measurement tapes crossed at M1 and M2 were displayed to assist in the estimation of

distance between a magnet and the sensor head.

(3) Select a Calibration Point C for AMFOD. A fixed object was needed to assist

in the final determination of angle φ. As such, Point C indicated in Figure 4.6(a, b)

marked by a tall wooden pole was selected out of the range of 34 measurement points.

The selection of Point C was to ensure that the light from the horizontal laser pointer 2

can reach the wooden pole at Point C when the AMFOD was stationed at each sensor

point.

(4) Determine the Coordinates of Smart Rocks, Sensor Head and Calibration

Point. A total station was used to survey the coordinates of various points at the test site.

Throughout the tests, one person operated the total station and another person held one

prism as seen in Figure 4.7 to ensure the consistent accuracy of coordinate measurements.

For each survey, the bottom center of the prism was aligned with the center of the top of

the wooden pole and bottle caps since the magnetic field intensity is very sensitive to Z-

coordinate.

Figure 4.7. Total station and prism for positioning.
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(5) Measure θ and φ. As shown in Figure 4.8, the AMFOD was placed at one

measurement point by aligning the center of its tripod to the top center of the plastic pole,

in which the center of the high-precision APSS should be kept along the extension line of

the plastic pole by adjusting the tripod with the high precision bubble level attached on

the horizontal disk of the AMFOD. At each measurement point, the tripod was first

adjusted horizontally without presence of the high-precision APSS. That is, after the

horizontal Laser 2 was switched on, the tripod was rotated until the shooting light hit on

the wooden pole at Point C and immediately locked at that position. The high-precision

APSS was then put back to the tapered support. After the inside ball with a magnet was

automatically aligned to the ambient magnetic field in several seconds, Laser 1 was

switched on and its supporting ring was manually turned vertically, in combination with

horizontal adjustment by the tunable disk, to facilitate the light going through the hole at

the center line of the high-precision APSS and hit on the center of the laser acceptor.

Finally, the two lasers were switched off and the two angles θ and φ can be read from the

digital marks on the vertical ring and horizontal disk, respectively. The above process

was repeated for all 34 points.

Figure 4.8. AMFOD setup and operational mechanism.

(6) Measure the Ambient Magnetic Field Intensity. One sensor head of the

magnetometer was faced on the ground and ensured to be perpendicular to the ground by

a bubble level attached onto the sensor head as shown in Figure 4.9. It is noted that a 57.7
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cm wooden stick fastened onto the sensor head was to keep the center of the sensor head

the same location at the center of the high-precision APSS in the AMFOD so that the

magnetometer and the AMFOD provided the corresponding magnitude and direction of

the ambient magnetic field vector, respectively. In addition, measurements should be

made when there are no vehicles on the bridge deck to avoid any potential interference.

At each point, at least three measurements were taken to ensure accuracy and

repeatability.

Figure 4.9. Magnetometer setup and operation.

(7) Measure the Total Magnetic Field Intensity of APSS at M1, M2 and M3. The

APSS smart rock was placed at each point M1, M2 or M3 as seen in the Figure 4.10. The

center of the magnet was aligned with the center of the bottle cap at each point. The total

magnetic field was generated by the magnet and the ambient magnetic field. The same

setup of the magnetometer stated in Step (6) was applied and repeated to measure the

total magnetic field intensity for the APSS at M1, M2 and M3, respectively.

Figure 4.10. APSS deployment: (a) M1APSS or M2APSS and (b) APSS at M3.
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(8) Measure the Total Magnetic Field Intensity of AOS at M1, M2 and M3. In this

final step, the AOS was placed at point M1, M2 and M3 as shown in Figure 4.11. The

center of the plastic box with the centered magnet was kept in alignment with the center

of the bottle cap at each point. The same setup of the magnetometer stated in Step (6) was

applied and repeated to measure the total magnetic field intensity for all the AOS at M1,

M2 and M3.

Figure 4.11. AOS deployment: (a) M1AOS or M2AOS and (b) AOS at M3.

4.7. TEST RESULTS AND DISCUSSION

In this section, the ambient magnetic field intensity at each measurement point

was calculated through geometrical calculations based on collected data. Then the

localization of AOS and APSS at three positions were evaluated and summarized.

4.7.1. Ambient Magnetic Field Intensity in XYZ Coordinate System. The θ

angle can be directly read from the digital marks on the vertical torus of the AMFOD.

However, the φ angle must be transformed from the directly measured angle φ' read from

the digital marks on the horizontal turntable of the AMFOD and the φ0 angle from the test

setup in XYZ coordinate system. As shown in Figure 4.12, BAi
Qi denotes the ambient

magnetic field vector at measurement point Qi in XOY plane, QiC represents the light of

Laser 2 shooting to the wooden pole at Point C, the local coordinate system xQiy is

parallel to the global coordinate system of XOY, and φ' in [0, π] is the angle spanned

from the extension of vector -BAi
Qi to the line QiC in counterclockwise direction.

Therefore, the direction of the ambient magnetic field φ in [0, 2π] in XOY plane is equal

to π-φ'+φ0 , where φ0 in [0, 2π] is the angle between line QiC and X-axis

counterclockwise and equal to arctan[(YC-YQi)/(XC-XQi)].

M3AOS

(a) (b)



www.manaraa.com

75

Figure 4.12. Angle adjustment.

Table 4.1 summarizes the coordinates of 34 sensor locations in the O-XYZ

coordinate system, the direction of the ambient magnetic field vector, and the ambient

magnetic field intensities at each measurement point.

Table 4.1. Sensor coordinates and ambient magnetic field intensities

Measurement
Point

Sensor Coordinates
(m)

Ambient
Magnetic Field

Direction
(rad)

Ambient Magnetic Field Intensity
(104 nT)

Xi Yi Zi θi φi BAi BAXi BAYi BAZi

C 15.28 -2.26 N/A N/A N/A N/A N/A N/A N/A
Q1 10.88 2.20 -0.55 1.21 1.50 5.080 0.121 1.775 5.080
Q2 11.43 1.48 -0.45 1.22 1.53 5.142 0.081 1.757 5.142
Q3 12.37 1.48 -0.58 1.22 1.48 5.136 0.164 1.749 5.136
Q4 12.04 0.59 -0.48 1.20 1.49 5.137 0.160 1.867 5.137
Q5 12.70 -0.16 -0.51 1.20 1.51 5.130 0.110 1.877 5.130
Q6 11.87 -0.54 -0.59 1.19 1.45 5.136 0.230 1.893 5.136
Q7 11.45 -1.21 -0.61 1.18 1.29 5.147 0.539 1.895 5.147
Q8 10.17 -1.84 -0.71 1.15 1.28 5.195 0.616 2.021 5.195
Q9 10.94 -2.07 -0.72 1.14 1.37 5.179 0.425 2.105 5.179
Q10 12.12 -1.66 -0.70 1.15 1.34 5.135 0.486 2.048 5.135
Q11 11.99 -3.08 -0.62 1.13 1.42 5.169 0.324 2.177 5.169
Q12 10.67 -3.16 -0.73 1.13 1.50 5.256 0.169 2.248 5.256
Q13 12.03 -4.40 -0.80 1.13 1.36 5.205 0.478 2.189 5.205
Q14 11.28 -4.17 -0.70 1.12 1.29 5.274 0.643 2.195 5.274
Q15 10.44 -3.83 -0.70 1.11 1.38 5.337 0.455 2.321 5.337
Q16 11.40 -5.22 -0.72 1.16 1.34 5.332 0.487 2.070 5.332
Q17 12.19 -5.82 -0.54 1.14 1.31 5.240 0.571 2.114 5.240
Q18 11.22 -6.36 -0.56 1.15 1.14 5.414 0.937 2.012 5.414

X

Y

O

C

Qi
x

y

φ'

φ
φ0

BAi
Qi
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Table 4.1. Sensor coordinates and ambient magnetic field intensities (cont.)

Q19 10.57 -7.12 -0.60 1.16 1.13 5.592 0.959 2.043 5.592
Q20 9.82 -2.72 -0.70 1.14 1.28 5.273 0.637 2.101 5.273
Q21 9.41 -3.88 -0.81 1.13 1.29 5.462 0.662 2.256 5.462
Q22 9.12 -3.12 -0.75 1.12 0.94 5.357 1.375 1.883 5.357
Q23 8.31 -4.22 -0.56 1.11 1.33 5.565 0.585 2.387 5.565
Q24 7.54 -5.29 -0.70 1.10 1.60 5.903 -0.075 2.661 5.903
Q25 7.75 -4.59 -0.92 1.10 1.53 5.732 0.107 2.618 5.732
Q26 7.32 -4.06 -0.79 1.13 1.41 5.530 0.381 2.341 5.530
Q27 8.04 -3.05 -0.61 1.13 1.24 5.357 0.749 2.172 5.357
Q28 7.99 -1.55 -0.69 1.14 1.33 5.205 0.521 2.095 5.205
Q29 9.22 -1.48 -0.69 1.19 1.27 5.194 0.577 1.841 5.194
Q30 8.65 -0.66 -0.79 1.19 1.30 5.160 0.516 1.854 5.160
Q31 8.32 0.28 -0.76 1.16 1.43 5.136 0.296 2.035 5.136
Q32 7.71 1.01 -0.63 1.14 1.46 5.133 0.237 2.123 5.133
Q33 8.81 1.49 -0.72 1.14 1.51 5.133 0.126 2.125 5.133
Q34 9.46 2.32 -0.44 1.16 1.41 5.142 0.326 2.016 5.142

4.7.2. AOS Localization. Table 4.2 gives the measured coordinates (X, Y, Z)

and measured total magnetic field intensities (Bi
(M)) at 18 sensor points when the AOS is

located at M1, which was compared with the predicted location using the measured

coordinates of sensor points. Table 4.3 and Table 4.4 provide similar results when the

AOS is located at M2 and M3. Overall, it can be observed from the test results at M1, M2,

and M3 that the SRSS prediction error ranges from 9.3 cm to 15.4 cm, which is quite

small in comparison with the diameter of smart rocks (approximately 30 cm).

Table 4.2.  Predicted and measured location of the AOS: M1AOS

Location of Sensor Head Xi (m) Yi (m) Zi (m) Bi
(M) (104 nT)

Q1 10.88 2.20 -0.52 5.356
Q2 11.43 1.48 -0.42 5.277
Q3 12.37 1.48 -0.55 4.975
Q4 12.04 0.59 -0.45 4.790
Q5 12.70 -0.16 -0.48 4.890
Q6 11.87 -0.54 -0.56 4.590
Q7 11.45 -1.21 -0.58 4.686
Q8 10.17 -1.84 -0.68 4.863
Q9 10.94 -2.07 -0.69 4.967
Q10 12.12 -1.66 -0.67 4.957
Q20 9.82 -2.72 -0.67 5.154
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Table 4.2.  Predicted and measured location of the AOS: M1AOS (cont.)

Q29 9.22 -1.48 -0.66 4.815
Q30 8.65 -0.66 -0.76 4.770
Q31 8.32 0.28 -0.73 5.050
Q32 7.71 1.01 -0.60 5.134
Q33 8.81 1.49 -0.69 5.491
Q34 9.46 2.32 -0.41 5.454

Predicted Location M1AOS 10.26 0.24 -1.46

N/AMeasured Location M1AOS 10.33 0.30 -1.42
Location Prediction Error for

M1AOS
-0.06 -0.07 -0.03

SRSS Error in Coordinate 0.10 m

Table 4.3.  Predicted and measured location of the AOS: M2AOS

Location of Sensor Head Xi (m) Yi (m) Zi (m) Bi
(M) (104 nT)

Q4 12.04 0.59 -0.45 5.158
Q5 12.70 -0.16 -0.48 5.104
Q6 11.87 -0.54 -0.56 5.135
Q7 11.45 -1.21 -0.58 5.129
Q10 12.12 -1.66 -0.67 4.882
Q11 11.99 -3.08 -0.59 4.817
Q13 12.03 -4.40 -0.77 5.137
Q14 11.28 -4.17 -0.67 5.116
Q15 10.44 -3.83 -0.67 4.926
Q16 11.40 -5.22 -0.69 5.306
Q21 9.41 -3.88 -0.78 5.112
Q23 8.31 -4.22 -0.53 5.425
Q25 7.75 -4.59 -0.89 5.654
Q26 7.32 -4.06 -0.76 5.445
Q27 8.04 -3.05 -0.58 5.178
Q28 7.99 -1.55 -0.66 5.371
Q30 8.65 -0.66 -0.76 5.635
Q31 8.32 0.28 -0.73 5.284

Predicted Location M2AOS 9.93 -2.21 -1.56

N/AMeasured Location M2AOS 10.05 -2.28 -1.48

Location Prediction Error for M2AOS -0.12 0.06 -0.08

SRSS Error in Coordinate 0.15 m
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Table 4.4.  Predicted and measured location of the AOS: M3AOS

Location of Sensor Head Xi (m) Yi (m) Zi (m) Bi
(M) (104 nT)

Q9 10.94 -2.07 -0.67 5.265
Q12 10.67 -3.16 -0.68 5.466
Q13 12.03 -4.40 -0.75 5.210
Q14 11.28 -4.17 -0.65 5.381
Q15 10.44 -3.83 -0.65 5.715
Q17 12.19 -5.82 -0.49 5.139
Q18 11.22 -6.36 -0.51 5.075
Q19 10.57 -7.12 -0.55 5.299
Q20 9.82 -2.72 -0.65 5.493
Q21 9.41 -3.88 -0.76 6.251
Q23 8.31 -4.22 -0.51 5.936
Q25 7.75 -4.59 -0.87 5.952
Q26 7.32 -4.06 -0.74 5.664
Q27 8.04 -3.05 -0.56 5.540

Predicted Location M3AOS 9.51 -5.52 -1.86

N/AMeasured Location M3AOS 9.58 -5.58 -1.84

Location Prediction Error for M3AOS -0.06 0.06 -0.02

SRSS Error in Coordinate 0.09 m

4.7.3. APSS Localization. Table 4.5 gives the measured coordinate (X, Y. Z)

and total magnetic field intensities (Bi
(M)) at 18 sensor points when the APSS is located at

M1, which was compared with the predicted location using the measured coordinates of

sensor points. Table 4.6 and Table 4.7 provide similar results when the APSS is located at

M2 and M3. Similar to the AOS case, the prediction location error of the magnet ranges

from 8.5 cm to 18 cm. Once again, this range of errors is small compared with the size of

smart rocks, demonstrating satisfactory accuracy in smart rock localization for bridge

scour monitoring.

Table 4.5. Predicted and measured location of the APSS: M1APSS

Location of Sensor Head Xi (m) Yi (m) Zi (m) Bi
(M) (104 nT)

Q1 10.88 2.20 -0.52 5.812
Q2 11.43 1.48 -0.42 5.695
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Table 4.5.  Predicted and measured location of the APSS: M1APSS (cont.)

Q3 12.37 1.48 -0.55 5.181
Q4 12.04 0.59 -0.45 4.972
Q5 12.70 -0.16 -0.48 4.989
Q6 11.87 -0.54 -0.56 4.797
Q7 11.45 -1.21 -0.58 4.973
Q8 10.17 -1.84 -0.68 5.213
Q9 10.94 -2.07 -0.69 5.206
Q10 12.12 -1.66 -0.67 5.094
Q20 9.82 -2.72 -0.67 5.300
Q28 7.99 -1.55 -0.66 5.146
Q29 9.22 -1.48 -0.66 5.103
Q30 8.65 -0.66 -0.76 4.891
Q31 8.32 0.28 -0.73 4.949
Q32 7.71 1.01 -0.60 5.119
Q33 8.81 1.49 -0.69 5.524
Q34 9.46 2.32 -0.41 5.642

Predicted Location M1APSS 10.25 0.45 -1.35

N/AMeasured Location M1APSS 10.33 0.30 -1.41

Location Prediction -0.08 0.15 0.06

SRSS Error in Coordinate 0.18 m

Table 4.6.  Predicted and measured location of the APSS: M2APSS

Location of Sensor Head Xi (m) Yi (m) Zi (m) Bi
(M) (104 nT)

Q4 12.04 0.59 -0.45 5.218
Q5 12.70 -0.16 -0.48 5.173
Q6 11.87 -0.54 -0.56 5.289
Q7 11.45 -1.21 -0.58 5.485
Q10 12.12 -1.66 -0.67 5.097
Q11 11.99 -3.08 -0.59 4.924
Q13 12.03 -4.40 -0.77 5.171
Q14 11.28 -4.17 -0.67 5.188
Q15 10.44 -3.83 -0.67 5.137
Q16 11.40 -5.22 -0.69 5.332
Q21 9.41 -3.88 -0.78 5.382
Q23 8.31 -4.22 -0.53 5.475
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Table 4.6.  Predicted and measured location of the APSS: M2APSS (cont.)

Q25 7.75 -4.59 -0.89 5.707
Q26 7.32 -4.06 -0.76 5.473
Q27 8.04 -3.05 -0.58 5.134
Q28 7.99 -1.55 -0.66 5.233
Q30 8.65 -0.66 -0.76 5.535
Q31 8.32 0.28 -0.73 5.277

Predicted Location M2APSS 9.96 -2.20 -1.43

N/AMeasured Location M2APSS 10.05 -2.28 -1.47

Location Prediction Error for M2APSS -0.09 0.08 0.04

SRSS Error in Coordinate 0.13 m

Table 4.7.  Predicted and measured location of the APSS: M3APSS

Location of Sensor Head Xi (m) Yi (m) Zi (m) Bi
(M) (104 nT)

Q9 10.94 -2.07 -0.66 5.277
Q11 11.99 -3.08 -0.56 5.242
Q12 10.67 -3.16 -0.67 5.520
Q13 12.03 -4.40 -0.74 5.253
Q14 11.28 -4.17 -0.64 5.493
Q15 10.44 -3.83 -0.64 5.879
Q16 11.40 -5.22 -0.66 5.311
Q17 12.19 -5.82 -0.48 5.161
Q18 11.22 -6.36 -0.50 5.117
Q19 10.57 -7.12 -0.54 5.245
Q20 9.82 -2.72 -0.64 5.516
Q21 9.41 -3.88 -0.75 6.373
Q23 8.31 -4.22 -0.50 5.920
Q25 7.75 -4.59 -0.86 5.835
Q26 7.32 -4.06 -0.73 5.609
P27 8.04 -3.05 -0.55 5.520

Predicted Location M3APSS 9.53 -5.52 -1.85

N/AMeasured Location M3APSS 9.58 -5.58 -1.82

Location Prediction Error for M3APSS -0.05 0.06 -0.03

SRSS Error in Coordinate 0.08 m
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4.8. SUMMARY

In this section, efforts were made to develop the localization mechanism for a

single smart rock with the APSS and AOS deployed at the bridge site of US Highway 63

over the Gasconade River. The localization mechanism is to establish a function between

the location of the smart rock and the total magnetic field intensity. The location of the

smart rock can then be determined through an optimization algorithm by comparing the

total magnetic field intensity calculated from the function with the actual total magnetic

field intensity directly measured by the G858 magnetometer.

The total magnetic field consists of the magnetic field generated by a permanent

magnet inside the smart rock, the Earth and any other ferromagnetic substances such as

the reinforcement in bridge piers and deck. The mathematic model of the magnetic field

for the magnet is known. However, the distribution of the combined Earth and other

ferromagnetic substances referred as the non-uniform ambient magnetic field is unknown.

Therefore, a custom-built device named AMFOD was developed to detect the orientation

and the G858 magnetometer was used to collect the intensity of the ambient magnetic

field.

Finally, the experimental field test at the bridge site of US Highway 63 over the

Gasconade River was designed and carried out to demonstrate the localization procedure

and validate the localization algorithm for the AOS and APSS. The results show that the

localization errors were small compared to the size of smart rocks and the achieved

accuracy for smart rock localization satisfactorily met the design requirements. The

known orientation of the APSS made the localization mechanism and procedure greatly

simpler than the AOS, thus a better choice for practical applications.
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5. FIELD IMPLEMENTATION AT THREE BRIDGE SITES

5.1. INTRODUCTION

In this section, the smart rock technology proposed and developed in Sections 2-4

is further validated at three bridge sites for real-time monitoring of scour depth or riprap

effectiveness. The three bridge sites tested are Highway 1 over the Waddell Creek (Br.

No. 36-0065) in California, I-44W Highway over the Roubidoux Creek (Br. No. L0093)

and US Highway 63 over the Gasconade River (Br. No. A3760) in Missouri.

In Section 4, the localization algorithm was validated with field measurements

from a river bank. The three components of the ambient magnetic field due to the effect

of the Earth and bridge pier/deck at all measurement points were obtained from the

specially-designed Ambient Magnetic Field Orientation Device (AMFOD). In this

section, all measurements are taken from the bridge deck considering the high potential

for flooding at the river bank during a flood event, making the use of the AMFOD

impractical. In this case, the smart rocks with automatically pointing upward system

(APUS) finalized for the three bridges in Section 2 are deployed around the scour critical

piers in order to generate strong magnetic fields in vertical direction for remote

measurement. The three components of the ambient magnetic field and the total magnetic

field are measured using a newly-acquired digital 3-axis magnetometer instead of the

G858 magnetometer and AMFOD used in Section 4. A direct measurement of the three

components of a magnetic field with the new magnetometer increases the operation

efficiency and the accuracy of localization in bridge applications. As they are measured,

the magnetic field intensities can be graphically viewed in real time on a computer with

the special software to go with the new magnetometer. This capability allows a real time

check on the quality of measured data during tests at bridge sites. In addition, a test crane

that can be installed on a truck and is moved on the bridge deck was designed and

manufactured to support the magnetometer sensor for measurements as close to the

deployed smart rock as possible above water. The stronger the measured magnetic field

intensity, the more accurate the identified location of the smart rock.

5.1.1. The 3-Axis Flux Magnetometer. A digital 3-axis magnetometer system

as shown in Figure 5.1, manufactured by STL Systemtechnik Ludwig GmBH in
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Konstanz, Germany, was used for this study. It is composed of a digital sensor DM050, a

three-channel coax Ethernet hub, a 50 m coax cable for power and data transmission, and

a notebook with STL GradMag software installed for full control of measurement, data

acquisition and graphical display. The DM050 is a precision magnetometer with 0.002 nT

resolution, less than 0.06 nT/√Hz noise and a field range of±1 mT. It measures three

orthogonal field components at a maximum sample rate of 10 kHz. The software also

offers the total field as an extra virtual channel. Typical sources of errors due to axis

misalignment, scaling, offset and phase are eliminated to the greatest extent possible with

a digital signal conditioning strategy. The software offering full control over all system

features, real-time monitoring of data and data documentation greatly improves the

efficiency of field data analysis and display.

Figure 5.1. The STL digital 3-axis flux magnetometer system.

5.1.2. The Lightweight Test Crane. In the design of a new frame to facilitate

field tests, the following factors were taken into account: stiffness, lightweight, ease in

installation, rapid assembling, and cost effectiveness. The frame must be sufficiently stiff

to minimize the wind induced disturbance on measurement during field tests. As shown

in Figure 5.2, the frame mainly consists of four components: 1 to 4. Comp.1 is a lower

horizontal beam that supports a sensor head for magnetic field intensity measurement and

two non-magnetic prisms for the coordinate determination of the sensor. Comp. 2 is a

vertical column that allows the access to the measurement points as close to the water

surface as possible in field application. Comp. 3 is an upper horizontal beam that

functions as an outrigger and support for the column. Comp. 4 is a forklift that allows the

three directional movement of the sensor head. In addition, Figure 5.2 includes balanced

weights (Comp. 5) as needed.
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Figure 5.2. Schematic view of test crane.

Comp.1 is made of carbon fibers that have a low density of 1800 kg/m3 and a high

modulus of elasticity of 240 GPa compared to other non-magnetic materials. Comp. 2 is

made of modular carbon fiber tubes (1 m in length) that are designed to minimize flexural

deformation and resist potential vibration caused by the wind load. The standard tubes

can be connected to any required length in field application. Comp. 3 is made of

aluminum alloy with a density of 2700-2810 kg/m3 and a modulus of elasticity of 71

GPa. A balanced weight is applied as needed to ensure that Comp.3 remains horizontal

during tests. All the components can be rapidly assembled at a test site. The forklift can

be installed on a trailer and pulled by a truck. It is operated manually in this study but

could be automatically controlled as needed from a remote site in the future. The test

crane is most appropriate for a bridge deck that is less than 10 m above water. The

outrigger can laterally extend up to 5 m from the bridge deck. The forklift allows a

vertical movement of up to 4 m. The test crane can move any distance as needed along

the traffic direction.

5.2. I-44W ROUBIDOUX CREEK BRIDGE

In this section, the I-44W Roubidoux Creek Bridge (No. L0039) in Waynesville,

MO, was used as the first test site to validate the performance of a smart rock. The bridge

is a ten-span, steel-girder structure to support two lanes of westbound traffic on Interstate

44. As shown in Figure 5.3, Pier 7 is located in the main flow of the channel and its

downstream side is scour critical. Three series of field tests were carried out in different
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seasons to validate the localization and accumulated movement of the smart rock between

flood events or during normal water flow.

The overall setup for three field tests is the same. One smart rock with two

stacked magnets in the APUS was deployed around the downstream side of Pier 7 during

the first field test and remain in place during the second and third field tests. The test

crane was applied to facilitate the three-dimensional movement of a 3-axis flux

magnetometer around the deployed smart rock. The magnetometer sensor head mounted

on the test crane was used to measure the magnetic field. Meanwhile, a prism mounted on

the crane in proximity to the magnetometer sensor head was surveyed from a total station

to collect the coordinate of each measurement point. In addition, a sonar instrument was

installed on the side of a small boat and employed to map the river bed profile around

Pier 7. Finally, the smart rock was located and compared based on the magnetic field data

and measurement point coordinates.

Figure 5.3. The overview of I-44 W Roubidoux Creek Bridge.

5.2.1. Test Setup and Layout. As shown in Figure 5.4(a, b), the test crane

and the magnetic field measurement system were set up on the bridge shoulder near Bent

7. A total station was set on ground near Bent 8 to survey the smart rock and the

magnetometer sensor head as ground true coordinate data. Its position was used as the

origin of a Cartesian coordinate system O-XYZ with X-, Y-, and Z-axles oriented in

transverse, longitudinal (traffic direction), and vertical (upward) directions, respectively,

following the right-hand rule. The smart rock, SR1, was deployed around Bent 7. The test

Pier 6
Pier 7Pier 8

IS44 W Roubidoux Creek Bridge, Br. No L0093
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crane was fixed on a trailer towed by a truck. The magnetometer sensor mounted on the

test crane was extended down from the bridge deck to measure the total magnetic field

near the smart rock. Prism 3 mounted below the sensor as shown in Figure 5.4(d) was

used to represent the coordinate of each measurement point. Prisms 1 and 2 were fixed at

two ends of the horizontal bar of the test crane to ensure that the bar was in parallel with

X axis. The measurement points in XOY plane were selected as the cross points in Mesh

1 as shown in Figure 5.4(a). They were translated to the corresponding forklift locations

on the bridge deck as illustrated in Figure 5.4(c). Through the test crane, the longitudinal,

transverse and vertical positions of the measurement points corresponded to Stop (S1-S3)

and Path (P1 and P2) of a flatbed trailer on the bridge deck as well as Elevation (E1-E7).

Therefore, each truck stop and forklift elevation is uniquely defined by a designation of

SrPsEt where r, s, and t are three integers. For each SrPsEt, the coordinate of the

magnetometer sensor and the magnetic field were measured simultaneously.

5.2.2. Test Procedure. (1) Set the XYZ coordinate system. As shown in

Figure 5.5, a proper location for the total station was selected near Bent 8 for its line of

sight to the magnetometer sensor, which is designated as Point O or the origin of the

coordinate system. The Y-axis pointing to Springfield was selected to be the longitudinal

(traffic) direction of the straight bridge deck, passing through Point O. The X-axis is

perpendicular to the Y-axis and pointing to downstream in the horizontal plane, and the

Z-axis is pointing up. A permanent point A (Benchmark) on Pier 9 was surveyed at each

field test for reference and translation from the measurement points in O-XYZ to the

coordinates selected during the first series of field tests.

(2) Assemble the test crane. As shown in Figures 5.4(b), the forklift was first set

and tied to an open flat trailer. The horizontal aluminum arm was then installed and

followed by an assembling of nine segments of carbon fiber tubes with 1.0 m each to

lower down the measurement points from the bridge deck. Finally, the horizontal bar was

connected at the bottom of the carbon tube to support the magnetometer sensor and

prisms for coordinate measurement.

(3) Set up the STL digital magnetometer. As shown in Figure 5.4(b), the laptop

installed with special software for the sensor control and measurement of magnetic fields.

An Ethernet cable was used to transmit the signal from the sensor to the laptop by an
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interface called mini Ethernet box. Two batteries were used to power the sensor and

laptop, respectively.

Figure 5.4. I-44W Roubidoux Creek bridge: (a) planning (unit: m), (b) test setup,
(c) forklift positions, and (d) sensor and prisms locations.
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Figure 5.5. Selection of the Cartesian coordinate system.

(4) Measure the ambient magnetic field. The ambient magnetic field is generated

by the Earth and nearby ferromagnetic objects.  It was measured prior to the deployment

of smart rock during the first field test. As indicated in Figure 5.4(a, b, d), the trailer ran

two paths (X coordinates) on the bridge deck and three stops (Y coordinates). At each

stop, seven elevations (Z coordinates) were selected by moving up and down the

horizontal beam of the test crane by 0.3 m. Figure 5.5(b) illustrates all the measurement

points in space. Figure 5.6 (a) illustrates one stop when the two rear tires of the trailer

were parked at the marked location and the forklift was positioned at P2S3. At each stop,

measurements (both coordinate and magnetic field intensity) were taken at seven

elevations in Z direction. Therefore, a total of 42 measurements were taken following the

measurement sequence as indicated in Figure 5.6(b).

(5) Deploy or inspect the smart rock and measure its coordinates. In the first

series of field tests, a smart rock (SR1) with two stacked N42 magnets in the APUS

configuration as shown in Figure 5.7 was deployed around the downstream side of Pier 7

as indicated in Figure 5.8(a). The smart rock was transported in a boat from the river

bank and deployed at the predetermined site shown in Figure 5.8(b). The smart rock can

be observed near Pier 7 with a connection rope floated on the water surface.
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Figure 5.6. A snapshot of field measurement: (a) test crane located at P2S3 and (b)
measurement point sequence.

Figure 5.7. The APUS: (a) schematic view and (b) cast in smart rock.

During the second series of field tests, the smart rock, SR1, was inspected to

ensure that it was rolled to the bottom of the scour hole around Pier 7. Indeed, it was

found to have slightly moved from the original position when deployed during the first

series of field tests.

During the third series of field tests, the smart rock, SR1, continued to be

inspected to ensure that it remained in the scour hole around Pier 7. It was found to have

slightly moved back to the original position during the first series of field tests.
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The coordinates of the smart rock in its original and new positions during all three

series of field tests were measured with a total station through the prism placed on top of

the smart tock, as illustrated in Figure 5.8(c). These measured coordinates served as

ground truth data in smart rock localization and validation.

Figure 5.8. Applicaton of smart rock SR1: (a) location, (b) deployment, and (c) survey.

(6) Measure the total magnetic field. After the deployment of smart rock during

the first series of field tests, the total magnetic field combining the effects of the smart

rock and the ambient magnetic field was measured following the same procedure as used
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tests, the total magnetic field was measured at 42 points around Pier 7 with the same

measurement sequence as shown in Figure 5.6(b).

(7) Measure the time-varying ambient magnetic field for reference. The Earth’s

magnetic field and the magnetization of nearby ferromagnetic substances may change

over time. To take this factor into account in the localization process of the smart rock,

the time-varying property of the ambient magnetic field was characterized. Bent 5 is over

60 m away from Bent 7 and its surrounding magnetic field is not affected by the presence

of the smart rock. Thus, Pier 5 (identical to Pier 7) was selected as a reference site for a

study of potential change of the ambient magnetic field over time. One permanent point,

P5 represented by (-1.02, 85.22, 0.44) coordinates, was marked on Pier 5 as a reference

for other nearby measurement points. To further separate the Earth’s and others’

magnetic fields, six measurement points, P5-1, P5-2, P5-3, P5-4, P5-5, and P5-6, were selected

at the top of orange markers as shown in Figure 5.9. The magnitude of the ambient

magnetic field for each point was measured by a scalar magnetometer G858. Note that

Point P5-6 represented by (15.43, 88.55, 0.53) coordinates is far away from Pier 5 and its

magnetic field is affected by the presence of Pier 5. It was selected during the first series

of field tests as a reference location for the Earth magnetic field intensity since the

magnetic field intensities within 1 m of Point P5-6 changed little. These measurements

indicated little influence from the bridge pier or deck. Therefore, the measurement at

Point P5-6 represents the Earth's magnetic field only. Continuing measurements at Point

P5-6 shed light on any potential change of the Earth magnetic field between various field

visits.

(8) Map the riverbed profile. The 999ci HD KVD SI Combo/900 Series - Side

sonar imaging instrument from HumminbirdTM Sonar as shown in Figure 5.10(a) was

used to map the riverbed profile in the studied area. The instrument is based on the sonar

mechanism to complete the HD side and down imaging. The side imaging can visualize

any structures, timbers, wrecks, falling logs and fishes in the covered underwater area.

The included GPS chart plotting with built-in Humminbrid ContourXD map and Ethernet

networking capabilities provides the altitude and latitude coordinates corresponding to

each mapping.
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Figure 5.9. Time-varying ambient magnetic field measurement near Pier 5.

Figure 5.10. Sonar installed on a boat for rivebed profiling: (a) setup and (b) operation.

As shown in Figure 5.10(a), the sonar transducer was fixed on one side of the boat

and adjusted to ensure it was below the boat. The control head of the sonar connected to

the transducer was operated to map the riverbed profile and the location of the smart rock.

Along the water flow, the boat first passed as close to the studied pier as possible, as

shown in Figure 5.10(b), to collect clear information about the pier, and then made

additional parallel runs gradually moving far away from the pier to map the riverbed.

5.2.3. Localization Algorithm. Let the two magnets in a smart rock centered

at Point P (XM, YM, ZM) and measurements taken at Point Qi (Xi, Yi, Zi) (i=1, 2, … , n)

near the smart rock. The ambient magnetic field of the Earth and other ferromagnetic

substances (e.g. steel reinforcement), BAi
(M) ( ) ( ) ( )( , , )M M M

A X i A Y i A Z iB B B , and the total magnetic

field of the Earth, the smart rock, and other ferromagnetic substances, BTi
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( ) ( ) ( )( , , )M M M
T X i T Y i T Z iB B B , are measured at an particular point Qi. The total magnetic field can

also be expressed into a summation of the effect of the magnets and the measured

ambient magnetic field. That is, ( ) ( )P M
T X i M X i A X iB B B  , ( ) ( )P M

T Y i M Y i A Y iB B B  , ( ) ( )P M
T Z i M Z i A Z iB B B  ,

and ( ) ( ) 2 ( ) 2 ( ) 2( ) ( ) ( )P P P P
Ti TXi T Yi TZiB B B B   in which the magnetic field of the magnets,

BMi(BMXi, BMYi, BMZi), at any point Qi (Xi, Yi, Zi) can be evaluated by:
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Mi MXi MYi MZiB B B B   (5.1e)

In an APUS, the y-axis from South to North pole of the magnet(s) is controlled by

the gravity effect and has nothing to do with the geographical south of the Earth. In

addition, the cylinder magnet is axis-symmetric about the y-axis. Therefore, the local x-

axis and z-axis perpendicular to the y-axis can be selected for convenience so long as

they follow the right-hand rule. In this section, the local x-axis is selected to be in parallel

with the global X-axis as defined in Figure 5.4. In this case, the local y-axis is pointing

down, which is opposite to the global Z-axis. Thus, the orientation of the magnet(s)

corresponds to Euler angles α = 3π/2, β = 0, and γ = 0 in the global coordinate system. Eq.

(5.1) then becomes
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(5.2)

Here, k represents a strength factor of the magnets in nT·m3, which is calculated from the

maximum residual flux density (or Br) of the magnets.

To locate the smart rock, an objective error function is defined as a SRSS

difference of the predicted and the measured magnetic field intensity at all measurement

points Qi (Xi, Yi, Zi) (i=1, 2, … , n). That is,

( ) ( ) 2

1

( , , Z ) [ ]
n

P M
M M M Ti Ti

i

J X Y B B


  (5.3)

The objective error function in Eq. (5.3) is minimized to derive the coordinate of the

smart rock, P (XM, YM, ZM).

5.2.4. Test Results and Discussion. To date, three series of field tests have

been completed at this bridge site. Both rock positioning accuracy and movement trend

are discussed below.

5.2.4.1 First series of field tests. The first series of tests were carried out on

November 6, 2015. Table 5.1 summarizes the coordinates of 42 measurement points, the

ambient magnetic field (AMF) intensities prior to smart rock deployment, and the total

intensities after deployment of the smart rock SR1. The coefficient k = 86521 nT.m3 for

two stacked N42 magnets was calculated from the maximum residual flux density. The

three components of the magnetic field were measured using the 3-axis digital

magnetometer sensor oriented in parallel with the X-, Y-, and Z-axis.
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Table 5.1. Coordinates and intensities from the first series of field tests

Measurement Point
Measurement Point Coordinate

(m)

AMF
Intensity
(104 nT)

Total
Intensity
(104 nT)

Xi Yi Zi
( )M
XAB ( )M

YAB ( )M
ZAB ( )M

TB

S1P1

E1 3.85 21.79 -1.00 2.278 0.102 -4.891 5.322
E2 3.82 21.61 -0.70 2.241 0.174 -4.900 5.335
E3 3.81 21.63 -0.41 2.242 0.223 -4.895 5.345
E4 3.81 21.67 -0.12 2.244 0.237 -4.891 5.354
E5 3.79 21.56 0.19 2.241 0.232 -4.891 5.362
E6 3.79 21.51 0.49 2.287 0.335 -4.867 5.369
E7 3.83 21.55 0.80 2.263 0.240 -4.878 5.370

S1P2

E1 2.07 21.87 -0.99 2.278 0.167 -4.893 5.327
E2 2.06 21.78 -0.72 2.278 0.167 -4.893 5.372
E3 2.06 21.81 -0.40 2.246 0.280 -4.911 5.407
E4 2.00 21.67 -0.10 2.245 0.286 -4.918 5.437
E5 2.07 21.70 0.19 2.240 0.271 -4.929 5.458
E6 2.08 21.63 0.47 2.246 0.293 -4.938 5.470
E7 2.08 21.61 0.78 2.250 0.324 -4.948 5.490

S2P1

E1 3.84 24.51 -1.00 2.247 0.216 -4.873 5.288
E2 3.83 24.50 -0.74 2.256 0.248 -4.861 5.296
E3 3.81 24.42 -0.39 2.241 0.254 -4.862 5.307
E4 3.79 24.32 -0.11 2.288 0.279 -4.835 5.318
E5 3.80 24.39 0.18 2.237 0.280 -4.855 5.327
E6 3.80 24.37 0.47 2.248 0.271 -4.848 5.334
E7 3.79 24.29 0.78 2.235 0.279 -4.851 5.342

S2P2

E1 2.07 24.57 -1.00 2.295 0.441 -4.798 5.258
E2 2.01 24.45 -0.71 2.285 0.493 -4.785 5.323
E3 2.04 24.49 -0.40 2.268 0.568 -4.781 5.359
E4 2.04 24.48 -0.11 2.233 0.524 -4.819 5.387
E5 2.03 24.40 0.19 2.233 0.496 -4.837 5.417
E6 1.96 24.20 0.50 2.224 0.519 -4.856 5.438
E7 2.08 24.30 0.80 2.230 0.555 -4.866 5.445

S3P1

E1 3.84 27.69 -1.03 2.149 0.225 -4.899 5.320
E2 3.84 27.67 -0.74 2.154 0.240 -4.895 5.323
E3 3.79 27.59 -0.41 2.158 0.269 -4.891 5.326
E4 3.84 27.58 -0.12 2.175 0.253 -4.884 5.327
E5 3.84 27.55 0.19 2.186 0.274 -4.873 5.331
E6 3.85 27.52 0.47 2.178 0.258 -4.878 5.334
E7 3.84 27.45 0.76 2.176 0.339 -4.869 5.334
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Table 5.1. Coordinates and intensities from the first series of field tests (cont.)

S3P2

E1 2.13 27.59 -1.02 2.084 0.523 -4.928 5.326
E2 2.11 27.30 -0.72 2.089 0.529 -4.927 5.336
E3 2.04 27.21 -0.41 2.108 0.545 -4.920 5.345
E4 2.04 27.31 -0.12 2.105 0.537 -4.927 5.359
E5 2.03 27.26 0.19 2.128 0.536 -4.925 5.375
E6 2.09 27.36 0.47 2.153 0.579 -4.912 5.388
E7 2.08 27.30 0.76 2.170 0.688 -4.898 5.400

Given the coordinates, AMF intensities, and total intensities at various

measurement points in Table 5.1, the minimization of Eq. (5.3) yielded the predicted

coordinate of the smart rock as presented in Table 5.2. By comparing the predicted

coordinate with the measured from the total station, also listed in Table 5.2, a prediction

error of 0.26 m was determined. The prediction error mainly occurred in Y coordinate

likely because the measurement bar was inaccurately placed on top of the smart rock with

0.368 m in diameter. Overall, the prediction error of 0.26 m is much less than 0.5 m, a

target rock positioning accuracy set forth for engineering applications.

Table 5.2. Predicted and measured location of the smart rock

Test date
Predicted coordinate Measured coordinate Prediction error

(m)XM (m) YM (m) ZM (m) XM (m) YM (m) ZM (m)

11/06/15 (1st) 0.06 23.49 -3.03 0.09 23.24 -3.04 0.26

04/14/16 (2nd) 0.55 24.38 -3.21 0.37 24.60 -3.38 0.33

10/20/16 (3rd) 0.00 22.73 -2.59 0.00 22.63 -2.87 0.30

5.2.4.2 Second series of field tests. The second series of field tests were

carried out on April 14, 2016. These tests followed the same test protocol as established

during the first series of field tests. The coordinate system set up during these tests was

slightly translated from that used during the first series of tests. It was transformed to the

first coordinate system through the benchmark A on Pier 9.

The Earth’s magnetic field intensity was measured using a magnetometer G858 at

Point P5-6 near Pier 5. It was 51,760 nT during the first series of tests and 52,120 nT

during the second series of tests, which indicates a 0.7% increase in magnetic field

intensity of the Earth. By comparing the Earth’s magnetic field intensity from the first
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series of tests with that of the AMF intensity in Table 5.1, the magnetic field resulting

from the steel reinforcement near Bent 7 is less than 2,700 nT or 5.3% of the Earth’s field

intensity. The steel reinforcement is magnetized in the Earth’s magnetic field. The

secondary magnetic field generated by the reinforcement is approximately correlated with

the Earth’s magnetic field, both varying over time as a result of the direct or indirect

effect of solar wind. Therefore, the AMF during the second series of tests was

approximated by increasing the AMF during the first series of tests by 0.7%. Table 5.3

summarizes the coordinates, the adjusted AMF intensities, and the total intensities at

various measurement points from the second series of field tests.

Table 5.3. Coordinates and intensities from the second series of field tests

Measurement
Point

Measurement Point
Coordinate

(m)

AMF
Intensity
(104 nT)

Total
Intensity
(104 nT)

Xi Yi Zi
( )M
XAB ( )M

YAB ( )M
ZAB ( )M

TB

S1P1

E1 3.83 21.77 -1.00 2.294 0.102 -4.925 5.375
E2 3.82 21.66 -0.71 2.256 0.175 -4.935 5.385
E3 3.80 21.61 -0.41 2.258 0.225 -4.929 5.395
E4 3.80 21.65 -0.12 2.260 0.239 -4.926 5.404
E5 3.76 21.51 0.18 2.257 0.234 -4.925 5.409
E6 3.79 21.56 0.47 2.303 0.337 -4.901 5.416
E7 3.81 21.53 0.79 2.279 0.242 -4.912 5.419

S1P2

E1 3.83 24.54 -1.00 2.263 0.218 -4.908 5.318
E2 3.87 24.42 -0.74 2.271 0.250 -4.895 5.342
E3 3.80 24.40 -0.40 2.257 0.256 -4.896 5.361
E4 3.75 24.34 -0.13 2.304 0.281 -4.869 5.375
E5 3.82 24.37 0.19 2.252 0.282 -4.889 5.385
E6 3.78 24.34 0.47 2.264 0.273 -4.882 5.393
E7 3.75 24.23 0.77 2.251 0.281 -4.885 5.396

S2P1

E1 3.85 27.66 -1.02 2.164 0.227 -4.933 5.339
E2 3.84 27.62 -0.73 2.169 0.242 -4.929 5.347
E3 3.75 27.57 -0.42 2.173 0.271 -4.925 5.355
E4 3.84 27.50 -0.12 2.190 0.254 -4.918 5.362
E5 3.85 27.58 0.19 2.201 0.276 -4.907 5.367
E6 3.83 27.54 0.47 2.193 0.260 -4.912 5.372
E7 3.85 27.49 0.77 2.191 0.342 -4.903 5.374
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Table 5.3. Coordinates and intensities from the second series of field tests (cont.)

S2P2

E1 2.05 21.86 -1.00 2.294 0.168 -4.928 5.405
E2 2.07 21.72 -0.72 2.294 0.168 -4.928 5.433
E3 2.06 21.88 -0.42 2.261 0.281 -4.945 5.456
E4 2.08 21.68 -0.11 2.261 0.288 -4.953 5.476
E5 2.07 21.62 0.19 2.256 0.273 -4.964 5.493
E6 2.06 21.61 0.47 2.261 0.296 -4.973 5.509
E7 2.07 21.62 0.78 2.265 0.326 -4.982 5.522

S3P1

E1 2.07 24.55 -0.99 2.311 0.444 -4.832 5.590
E2 2.01 24.41 -0.71 2.301 0.497 -4.818 5.580
E3 2.07 24.43 -0.41 2.284 0.572 -4.814 5.571
E4 2.08 24.46 -0.11 2.249 0.527 -4.853 5.560
E5 2.09 24.47 0.20 2.249 0.499 -4.871 5.547
E6 2.09 24.20 0.49 2.239 0.523 -4.890 5.544
E7 2.09 24.32 0.79 2.245 0.559 -4.900 5.539

S3P2

E1 2.14 27.57 -1.01 2.099 0.526 -4.963 5.372
E2 2.13 27.32 -0.72 2.104 0.532 -4.962 5.392
E3 2.06 27.23 -0.40 2.123 0.549 -4.955 5.411
E4 2.04 27.37 -0.12 2.120 0.541 -4.962 5.427
E5 2.05 27.25 0.18 2.143 0.540 -4.959 5.442
E6 2.11 27.31 0.47 2.168 0.583 -4.947 5.455
E7 2.04 27.28 0.76 2.185 0.693 -4.932 5.467

As shown in Table 5.2, the prediction error in rock positioning during the second

series of tests was 0.33 m, which is nearly 30% higher than that during the first series of

tests. The higher level of prediction error was likely attributed to the less accurate AMF.

Nevertheless, a prediction error of 0.33 m is still much less than 0.5 m, which is

acceptable in engineering application.

5.2.4.3 Third series of field tests. The third series of tests were carried out on

October 20, 2016. These tests also followed the same test protocol as established during

the first series of field tests. The coordinate system set up during the third series of tests

was also transformed to the first coordinate system through the benchmark A on Pier 9.

Similarly, the Earth’s magnetic field intensity was measured using a magnetometer G858

at Point P5-6 near Pier 5. It was 51,761 nT during the first series of tests and 52,021 nT

during the third series of tests, which indicates a 0.5% increase in magnetic field intensity.

Following the same analysis mechanism as used during the second series of field tests,

the AMF during the third series of tests was adjusted by increasing the AMF during the
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first series of tests by 0.5%. Table 5.4 summarizes the coordinates, the adjusted AMF

intensities, and the total intensities at various measurement points for the third series of

field tests.

As shown in Table 5.2, the prediction error in rock positioning during the third

series of tests was 0.30 m, which is nearly 16% higher than that during the first series of

tests. The higher level of prediction error was also attributed to the less accurate AMF.

Nevertheless, a prediction error of 0.30 m is still acceptable in engineering application.

Table 5.4. Coordinates and intensities from the third series of field tests

Measurement
Point

Measurement Point
Coordinate

(m)

AMF
Intensity
(104 nT)

Total
Intensity
(104 nT)

Xi Yi Zi
( )M
XAB ( )M

YAB ( )M
ZAB ( )M

TB

S1P1

E1 3.81 21.77 -0.93 2.290 0.102 -4.915 5.350
E2 3.82 21.63 -0.68 2.252 0.175 -4.925 5.365
E3 3.78 21.37 -0.32 2.253 0.224 -4.920 5.381
E4 3.81 21.35 -0.10 2.256 0.238 -4.916 5.395
E5 3.74 21.23 0.28 2.252 0.233 -4.915 5.403
E6 3.79 21.36 0.50 2.298 0.336 -4.892 5.408
E7 3.81 21.35 0.88 2.274 0.241 -4.902 5.413

S1P2

E1 3.76 24.09 -0.94 2.258 0.217 -4.898 5.308
E2 3.78 24.09 -0.72 2.267 0.249 -4.886 5.327
E3 3.76 24.05 -0.33 2.253 0.256 -4.886 5.343
E4 3.77 24.08 -0.01 2.300 0.281 -4.859 5.358
E5 3.77 24.07 0.20 2.248 0.281 -4.879 5.369
E6 3.77 24.06 0.49 2.259 0.272 -4.872 5.379
E7 3.76 23.97 0.87 2.246 0.280 -4.875 5.386

S2P1

E1 3.73 27.21 -0.94 2.160 0.226 -4.924 5.358
E2 3.77 27.20 -0.71 2.165 0.241 -4.919 5.362
E3 3.79 27.17 -0.33 2.168 0.270 -4.915 5.366
E4 3.78 27.20 -0.12 2.186 0.254 -4.908 5.370
E5 3.78 27.21 0.27 2.197 0.276 -4.898 5.374
E6 3.76 27.14 0.48 2.189 0.260 -4.903 5.378
E7 3.69 27.05 0.78 2.187 0.341 -4.893 5.380

S2P2

E1 2.06 21.14 -0.93 2.289 0.167 -4.918 5.400
E2 2.08 21.16 -0.71 2.289 0.167 -4.918 5.437
E3 2.06 21.14 -0.32 2.257 0.281 -4.936 5.469
E4 2.02 20.91 -0.01 2.256 0.288 -4.943 5.497
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Table 5.4. Coordinates and intensities from the third series of field tests (cont.)

S2P2

E5 2.04 21.09 0.28 2.251 0.272 -4.954 5.519

E6 2.06 21.06 0.48 2.257 0.295 -4.963 5.535

E7 2.12 21.12 0.87 2.261 0.325 -4.972 5.540

S3P1

E1 2.09 23.91 -0.92 2.306 0.443 -4.822 5.349
E2 2.09 23.83 -0.70 2.296 0.496 -4.809 5.428
E3 2.14 23.90 -0.32 2.279 0.571 -4.805 5.445
E4 2.14 23.89 -0.11 2.244 0.526 -4.843 5.471
E5 2.15 23.88 0.28 2.244 0.498 -4.862 5.487
E6 2.11 23.85 0.50 2.235 0.522 -4.880 5.510
E7 2.14 23.88 0.88 2.241 0.558 -4.890 5.515

S3P2

E1 2.07 27.03 -0.94 2.095 0.525 -4.953 5.376
E2 2.14 27.06 -0.71 2.100 0.531 -4.952 5.390
E3 2.10 26.96 -0.33 2.118 0.548 -4.945 5.402
E4 2.16 27.08 -0.02 2.116 0.540 -4.952 5.417
E5 2.13 27.07 0.27 2.139 0.539 -4.950 5.430
E6 2.10 27.01 0.50 2.164 0.582 -4.937 5.448
E7 2.08 26.83 0.77 2.181 0.691 -4.922 5.457

5.2.4.4 Smart rock movement and scour depth. The predicted and measured

coordinates of the smart rock obtained from the first, second and third series of tests, as

listed in Table 5.2, were used to calculate the displacement of the smart rock between the

three tests both numerically and experimentally. The three displacement components

(ΔXM, ΔYM, ΔZM) and the total displacement as well as the difference between the

predicted and measured displacements are presented in Table 5.5.

Table 5.5. Prediction accuracy of smart rock movement

Displacement
From first to second series of tests

From second to third series of
tests

ΔXM

(m)
ΔYM

(m)
ΔZM

(m)
Total
(m)

ΔXM

(m)
ΔYM

(m)
ΔZM

(m)
Total
(m)

Predicted 0.49 0.89 -0.18 1.04 -0.55 -1.65 0.62 1.85

Measured 0.28 1.37 -0.34 1.44 -0.37 -1.97 0.51 2.06

Difference 0.21 -0.47 0.16 -0.40 -0.19 0.32 0.11 -0.21

Figure 5.11 illustrates the measured position and movement of the smart rock in

the scour hole around Pier 7 during the three site visits. The movement is displayed on a
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three-dimensional contour map created in ArcGIS based on the riverbed survey data

collected with the sonar and total station in the Cartesian coordinate system O-XYZ

established during the second and third series of field tests.

Figure 5.11.  The smart rock movement in the scour hole around Pier 7: (a) the second
field test and (b) the third field test.
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direction. As explained previously, this error is likely attributed to the potentially

misplaced measurement bar in the process of measuring the location of the smart rock.

Nevertheless, both the component and total displacement errors are less than 0.5 m, a

level of accuracy acceptable in engineering application. It is also important to note that

the predicted and measured movement directions of the smart rock are all consistent. In

particular, the smart rock was settled down by 0.18 m (prediction) or 0.34 m

(measurement) during the December 27, 2015 flood.

From the second to third series of tests, the predicted and measured total

displacements are 1.85 m and 2.06 m, respectively. They are differed by 0.21 m. The

maximum component displacement error of 0.32 m also came from Y-direction because

of the main error from actual location measurement and other factors discussed in the

prediction error of localization. Nevertheless, both the component and total displacement

errors are within the acceptable range in application. Between the second and third series

of tests, the smart rock moved upward in Z direction by 0.51 m and away from Pier 7 in

Y direction by 1.97 m. These movements may result from the change of the scour hole in

shape and deposits refilling between the two series of tests.

5.3. STATE HIGHWAY 1 WADDELL CREEK BRIDGE

In this section, the State Highway 1 Bridge (No. 36-0065) over the Waddell Creek,

approximately 27 km north of the City of Santa Cruz in California, was used as the

second test site to validate the performance of the smart rock. As shown in Figure 5.12,

the bridge is a four-span, continuous reinforced concrete T-girder structure, supporting

two lanes of two way traffic on California Highway 1. The upstream of the bridge is a

small creek formed between low mountains while the downstream of the bridge is only a

few hundreds of meters from the Pacific Ocean. The bridge site is exposed to a complex

hydraulic condition, combining the strong water flow from the mountains during flood

events and the strong current from the Pacific Ocean during high tides. As a result, the

embankment around South Abutment 1 (closer to Santa Cruz) experienced severe erosion

extending from the channel bank from the upstream. Since Caltrans already protected the

Abutment 1 with rocks, Abutment 1 was used as a validation site of monitoring the riprap

effectiveness with a smart rock. Similarly, the pier at Bent 2 was considered by Caltrans
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as scour critical and thus used as a validation site for scour depth monitoring with the

smart rock technology. To date, two series of field tests were carried out to validate the

localization and movement of the smart rock driven by flood events or normal water flow.

Figure 5.12. State Highway 1 Bridge over Waddell Creek, CA.

During the first series of field tests, one smart rock with two stacked magnets in

the APUS configuration was placed among a few widely spaced natural rocks at the toe

of riprap measures around Abutment 1 for riprap effectiveness monitoring. Two

additional smart rocks were placed on the surface of the riverbed near Bent 2 for bridge

scour monitoring. The test crane was placed on the bridge deck with a mounted

magnetometer sensor to facilitate measurements of the intensity and direction of the

ambient magnetic field and the total field after the smart rocks had been deployed.

During the second series of field tests, the three smart rocks deployed previously

were found to have been washed away likely due to the strong tide waves from the

Pacific Ocean occurred in March 2016. Therefore, two new smart rocks were deployed

again near Bent 2 to validate the localization algorithms for one or two smart rocks. This

time, however, the smart rocks were buried into the riverbed such that the top of the

smart rocks was flush with the riverbed with the intent of making them difficult to be

washed away. The test crane was mounted on a flatbed trailer for easy maneuver.

5.3.1. Planning for the First Series of Field Tests. All tests were conducted

near South Abutment 1 on the Santa Cruz side and the pier at Bent 2 of the 4-span bridge

as shown in Figure 5.13(a, b). A total station was set near North Abutment 5 on the San
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Francisco side to measure the coordinates (location) of three smart rocks and the

magnetometer sensor as ground truth data. The center of the total station was used as the

origin of a Cartesian coordinate system O-XYZ with X-, Y-, and Z- axles oriented

transversely (upstream to downstream direction), longitudinally (south bound traffic

direction), and vertically (upward direction). Two smart rocks, designated as SR1 and

SR2, were deployed on two sides of the Bent 2 in far and near distances, respectively.

The third smart rock, SR3, placed in the gap of riprap rocks around South Abutment 1.

The magnetometer sensor mounted on the test crane was extended down from the bridge

deck for measurement of the ambient magnetic field and the total magnetic field with the

smart rocks placed at three locations. Prism 3 mounted below the sensor was used to

represent the location of each measurement point. The measurement points in XOY plane

are shown in Figure 5.13(a) as the cross points of Mesh 1 for Abutment 1 and Mesh 3 for

Bent 2. The sensor points in Mesh 1 and Mesh 3 were translated to Mesh 2 and Mesh 4

on the bride deck for representation positions of the forklift as displayed in Figure 5.13(c).

These forklift points were represented as four Paths (P1, P2, P3 and P4) and three Stops

(S1, S2 and S3) on each path. For each stop on one path, seven elevations denoted as E1,

E2, E3, E4, E5, E6 and E7 with equal spacing of 0.3 m were positioned for field

measurements. Therefore, a total of 84 measurements were taken for SR3 around

Abutment 1 and for SR1 & SR2 around Bent 2.

As used for the I-44W Roubidoux Creek Bridge in Missouri, the seven-step test

procedure was adopted for the Waddell Creek Bridge in California as follows in detail:

(1) Set the XYZ coordinate system. As shown in Figure 5.14, a permanent Point A

on concrete pedestal at the top and upstream/east side of south abutment was selected as

the benchmark for this bridge site. The total station was set at Point O on the north end of

the bridge such that Y-axis along the traffic (longitudinal) direction to Santa Cruz is

parallel to the tangential line of bridge railing closest to Point A, X-axis is perpendicular

to the Y-axis and pointing to downstream/west in the horizontal plane, and Z-axis is

pointing up according to the right hand rule.
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Figure 5.13. Waddell Creek bridge – first series of tests: (a) planning (unit: m), (b) test
setup, and (c) forklift positions.
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Figure 5.14. Selection of the coordinate system.

(2) Assemble the test crane. The test crane as shown in Figure 5.13 (b) was

directly set on the bridge deck. The forklift was first placed on the bridge deck. The

horizontal aluminum arm was then installed and five segments of carbon fiber tubes with

1.0 m each were assembled. Finally, the horizontal bar with three prisms and sensor

attached was connected to the bottom tube.

(3) Set up the STL digital magnetometer. The magnetometer was set up in exactly

the same way as used at the I-44W Roubidoux Creek bridge site.

(4) Measure the ambient magnetic field. The ambient magnetic field was

measured prior to deployment of the smart rocks. The forklift was first parked at S1P1

and the horizontal arm was moved up or down between E1 and E7 for simultaneous

measurements of the coordinate and intensity at each elevation. The forklift was then

moved to S1P2, S1P3 and S1P4 for successive measurements along X axis. It was further

moved to S2 and S3 lines along Y axis to repeat the same measurements as those along

S1 line in X direction. The same sequence and steps were followed near Bent 2 to

complete the measurements along S1, S2 and S3 lines, respectively, as illustrated in

Figure 5.15.

Figure 5.15. Sequence for ambient magnetic field measurements.
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(5) Deploy the smart rocks and measure their coordinates. Three smart rocks with

the APUS, as shown in Figure 5.7, were deployed as indicated in Figure 5.16 before the

total magnetic field was measured. As shown in Figure 5.16(a), SR1 and SR2 were

located on the north and south sides of Bent 2 for scour monitoring and SR3 between two

rocks near the south abutment for riprap effectiveness monitoring. The three smart rocks

were individually transported in a boat and dropped at the predetermined sites as

indicated in Figure 5.16(b). As illustrated in Figure 5.16(c), SR3 in shallow water can be

clearly seen from the bridge deck, SR2 close to the bottom of the scour hole can be barely

seen when the water is calm, and SR1 farther away from Bent 2 with a connection rope

floated on the water surface can be located as well. The deployed smart rocks were

surveyed for their coordinates from the total station through the placement of a prism on

top of each smart rock.

(6) Measure the total magnetic field. After the deployment of smart rocks, the

total magnetic field from the smart rocks, the Earth, and the nearby ferromagnetic objects

was measured following the same procedure as used for the ambient magnetic field

measurements except that only six elevations were considered in Z direction for all points

near the south abutment. Therefore, a total of 72 and 84 measurements were taken around

the south abutment for SR3 and around Bent 2 for SR1 and SR2, respectively.

Figure 5.16. Application of three smart rocks: (a) locations, (b) SR3 deployment, and (c)
top views.
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5.3.2. Planning for the Second Series of Field Tests. The spherical smart

rock SR3 deployed previously had no interlock with nearby natural rocks. It was

witnessed by a Caltrans engineer to have been washed away due to strong tide waves.

Heavier and polyhedral smart rocks are recommended for riprap effectiveness monitoring

in the future.

Therefore, the second series of field tests were focused on the localization of

smart rocks near Bent 2. Since the previously deployed smart rocks SR1 and SR2 cannot

be located near the bridge, they were assumed to have also been washed away. As a result,

two same smart rocks, also named SR1 and SR2, were deployed near Bent 2 again. This

time, however, the smart rocks were buried in the riverbed to increase their resistance to

strong water current. The test layout was also changed and simplified based on the

experience gained from the first series of field tests, as shown in Figure 5.17. The test

crane as shown in Figure 5.17(c) was fixed on a flatbed trailer towed by a truck. Through

the test crane, the measurement points at the location of the sensor (cross points of Mesh

1) were translated to the corresponding forklift locations (cross points of Mesh 2)

represented by two paths (P1 and P2) and seven stops (S1, S2, S3, S4, S5, S6, and S7) on

the bridge deck, as depicted in Figure 5.17(d). For each stop on two path of the trailer,

seven elevations denoted as E1, E2, E3, E4, E5, E6 and E7 with equal spacing of 0.3 m

were considered for magnetic field measurements. Therefore, a total of 98 measurements

were taken around Bent 2 in order to locate the two smart rocks.

The second series of field tests followed the same procedure as used during the

first series of tests except that the two smart rocks, SR1 and SR2 on the north and south

side of Bent 2, were deployed at different times with the total magnetic field

measurements taken in between. The ambient magnetic field was first measured

following the sequence as shown in Figure 5.18. After the deployment of SR1, the total

magnetic field with one smart rock was then measured along two paths P1 and P2 with

three stops S4, S5 and S7 at 39 points. After the deployment of SR2, the total magnetic

field with two smart rocks as depicted in Figure 5.19 was next measured along the two

paths with seven stops at 91 points. Finally, SR2 was moved to a new position

represented by SR2' and the total magnetic field was measured again at points P1S2,

P1S3, P1S5, P1S6, P2S1, P2S3, P2S5, and P2S7 for a total of 52 measurements.
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Figure 5.17. Waddell Creek bridge - second series of tests: US63 Bridge site: (a)
planning (unit: m), (b) test setup, and (c) forklift positions.

Figure 5.18. Sequence for ambient magnetic field measurement during the second series
of field tests.
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Figure 5.19. Deployed smart rocks: SR1 and SR2 during the second series of test.

5.3.3. Localization Algorithm of One Smart Rock. The localization

algorithm for the APUS with two stacked magnets is exactly the same as that used at the

I-44W Roubidoux Creek Bridge site.

5.3.4. Localization Algorithm of Two Smart Rocks. Let two magnets be

centered at Point P1 (XM1, YM1, ZM1) and P2 (XM2, YM2, ZM2), respectively, in the Cartesian

coordinate system O-XYZ as shown in Figure 5.20. The ambient magnetic field of the

Earth and other ferromagnetic substances (e.g. steel reinforcement), BAi
(M)

( ) ( ) ( )( , , )M M M
A X i A Y i A Z iB B B , and the total magnetic field of the Earth, the smart rocks, and the

other ferromagnetic substances, BTi
(M) ( ) ( ) ( )( , , )M M M

T X i T Y i T Z iB B B , are measured at any Point Qi

(Xi, Yi, Zi) (i=1, 2, … , n) near the two smart rocks. The total magnetic field can also be

expressed into a summation of the effect of the two magnets and the experimental

ambient magnetic field. That is,

( ) ( )P M
T X i M 1 X i M 2 X i A X iB B B B   (5.4a)

( ) ( )P M
T Y i M 1 Y i M 2 Y i A Y iB B B B   (5.4b)

( ) ( )P M
T Z i M 1 Z i M 2 Z i A Z iB B B B   (5.4c)

( ) ( ) 2 ( ) 2 ( ) 2( ) ( ) ( )P P P P
Ti TXi T Yi TZiB B B B   (5.4d)

in which the magnetic field of the magnets, BM1i (BM1Xi, BM1Yi, BM1Zi) and BM2i (BM2Xi,

BM2Yi, BM2Zi), at any point (Xi, Yi, Zi) can be derived in the same way as for Eq. (5.2) and

evaluated by:
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Here, k1 and k2 represent the strength factors of the two magnets in nT·m3. They can be

calculated from the maximum residual flux density (or Br) of the magnets.

Figure 5.20. Two magnets and various magnetic field measurements in O-XYZ system.
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To locate the two smart rocks, an objective error function is defined as a SRSS

difference between the predicted and the measured magnetic field intensities at all

measurement points Qi (Xi, Yi, Zi) (i=1, 2, … , n). That is,

( ) ( ) 2
1 1 1 2 2 2

1

( , , Z ; , , Z ) [ ]
n

P M
M M M M M M Ti Ti

i

J X Y X Y B B


  (5.6)

The objective error function in Eq. (5.6) is minimized to derive the coordinates of the two

smart rocks, P1 (XM1, YM1, ZM1) and P2 (XM2, YM2, ZM2).

5.3.5. Test Results and Discussion. In this section, the localization of the SR3

deployed near the south abutment at the first series field test was conducted. For the

second series field test, the location of single smart rock SR1 deployed near Bent 2 was

firstly predicted and then the localization of two smart rocks was evaluated.

5.3.5.1 Field tests near the south abutment. Table 5.6 summarizes the

coordinates of 18 measurement points near the south abutment, the AMF intensities, and

the total intensities after deployment of the smart rock SR3. The coefficient k = 86521

nT.m3 for two stacked N42 magnets is calculated from the maximum residual flux density.

The three components of the AMF (B(M)
Ax, B

(M)
Ay, B(M)

Az) and the total magnetic field ( )M
TB

were directly measured from the 3-axis flux magnetometer in which three directions

marked on the sensor were placed in parallel with the three axles of the O-XYZ

coordinate system. Therefore, the magnitude of the total magnetic field and the three

components of the AMF were substituted into the localization algorithm of one smart

rock to determine the coordinates of the smart rock SR3.

Table 5.6.  Coordinates and intensities for SR3 location

Measurement
Point

Measurement Point
Coordinate (m)

AMF
Intensity
( 104 nT)

SR3&AMF
Intensity
(104 nT)

Xi Yi Zi
( )M
AXB ( )M

AYB ( )M
AZB ( )M

TB

P2S1

E1 0.66 42.26 -0.94 -1.868 -0.982 -4.001 4.583
E2 0.69 42.29 -0.64 -1.867 -0.974 -4.012 4.600
E3 0.70 42.30 -0.32 -1.865 -0.980 -4.017 4.607
E4 0.70 42.25 -0.03 -1.866 -0.975 -4.024 4.606
E5 0.75 42.25 0.28 -1.872 -0.974 -4.024 4.604
E6 0.77 42.35 0.57 -1.866 -0.989 -4.023 4.599
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Table 5.6.  Coordinates and intensities for SR3 location (cont.)

P3S1

E1 1.69 42.29 -1.14 -1.824 -0.971 -3.997 5.139
E2 1.75 42.30 -0.84 -1.828 -0.966 -4.018 5.019
E3 1.68 42.25 -0.54 -1.840 -0.969 -4.031 4.871
E4 1.69 42.27 -0.25 -1.851 -0.969 -4.044 4.804
E5 1.71 42.28 0.06 -1.871 -0.959 -4.052 4.758
E6 1.74 42.28 0.37 -1.888 -0.968 -4.051 4.726

P4S1

E1 2.34 42.39 -1.09 -1.641 -1.080 -4.026 5.758
E2 2.34 42.37 -0.89 -1.656 -1.063 -4.059 5.490
E3 2.38 42.34 -0.59 -1.676 -1.055 -4.084 5.219
E4 2.38 42.29 -0.28 -1.697 -1.062 -4.105 5.043
E5 2.42 42.34 0.02 -1.732 -1.059 -4.121 4.940
E6 2.44 42.33 0.32 -1.771 -1.078 -4.123 4.888

Table 5.7 compares the predicted and measured coordinates (XM, YM, ZM) of the

smart rock SR3. It can be observed that the largest error in Z coordinate is 29 cm as a

result of significant swing of the sensor caused by the strong wind during the tests. The

SRSS prediction error of three components is 36 cm, which is small in comparison with

the error limit of half a meter.

Table 5.7. Predicted and measured location of smart rock SR3

XM (m) YM (m) ZM (m)

Predicted SR3 coordinate 2.79 41.30 -2.82

Measured SR3 coordinate 2.71 41.10 -2.53

Location Prediction Error 0.08 0.20 -0.29

SRSS Error in Coordinate 0.36 m

5.3.5.2 Field tests near Bent 2. Table 5.8 summarizes the coordinates of 39

measurement points near Bent 2, the AMF intensities prior to any smart rock deployment,

and the total intensities after deployment of the smart rock SR1. The three components of

the AMF and the total magnetic field were directly measured from the 3-axis

magnetometer sensor oriented in parallel with the X-, Y-, and Z-axis.
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Table 5.8. Coordinates and intensities for SR1 location

Measurement Point Coordinate
(m)

AMF Intensity
(104 nT)

SR1&AMF intensity
(104 nT)

Xi Yi Zi
( )M
XAB ( )M

YAB ( )M
ZAB ( )M

TB

P1S4

E1 -2.88 29.26 -1.50 -2.087 -0.956 -4.032 4.597
E2 -2.87 29.29 -1.21 -2.085 -0.955 -4.045 4.619
E3 -2.85 29.33 -0.91 -2.096 -0.962 -4.050 4.639
E4 -2.82 29.37 -0.61 -2.093 -0.967 -4.057 4.655
E5 -2.81 29.40 -0.32 -2.097 -0.971 -4.061 4.668
E6 -2.80 29.41 0.00 -2.102 -1.006 -4.053 4.677

P1S5

E1 -2.89 27.66 -1.51 -2.095 -0.909 -4.030 4.486
E2 -2.87 27.68 -1.21 -2.091 -0.928 -4.042 4.506
E3 -2.84 27.72 -0.92 -2.100 -0.940 -4.047 4.532
E4 -2.82 27.74 -0.60 -2.100 -0.958 -4.053 4.561
E5 -2.80 27.76 -0.31 -2.107 -0.948 -4.061 4.586
E6 -2.78 27.78 0.00 -2.106 -0.969 -4.062 4.611

P1S7

E1 -2.84 25.29 -1.50 -2.110 -0.868 -4.029 4.581
E2 -2.81 25.34 -1.19 -2.104 -0.880 -4.043 4.564
E3 -2.79 25.39 -0.90 -2.112 -0.890 -4.050 4.558
E4 -2.77 25.41 -0.59 -2.110 -0.914 -4.056 4.563
E5 -2.75 25.46 -0.31 -2.116 -0.909 -4.064 4.574
E6 -2.74 25.46 0.01 -2.115 -0.937 -4.065 4.588

P2S4

E1 -1.94 29.14 -1.51 -2.196 -0.946 -3.993 4.615
E2 -1.92 29.22 -1.21 -2.207 -0.981 -4.002 4.654
E3 -1.91 29.28 -0.91 -2.224 -1.004 -4.007 4.685
E4 -1.89 29.30 -0.62 -2.240 -1.005 -4.014 4.707
E5 -1.86 29.32 -0.31 -2.255 -0.998 -4.019 4.722
E6 -1.86 29.34 -0.02 -2.267 -0.997 -4.018 4.731
E7 -1.83 29.37 0.28 -2.278 -1.002 -4.010 4.735

P2S5

E1 -1.93 27.64 -1.52 -2.164 -0.903 -4.006 4.203
E2 -1.91 27.66 -1.21 -2.185 -0.898 -4.023 4.318
E3 -1.89 27.70 -0.91 -2.199 -0.927 -4.032 4.437
E4 -1.88 27.73 -0.62 -2.215 -0.924 -4.043 4.437
E5 -1.84 27.76 -0.32 -2.243 -0.924 -4.043 4.579
E6 -1.84 27.78 -0.01 -2.259 -0.912 -4.046 4.626
E7 -1.82 27.85 0.27 -2.275 -0.948 -4.033 4.660

P2S7

E1 -1.86 25.19 -1.50 -2.193 -0.854 -3.985 4.408
E2 -1.83 25.19 -1.20 -2.212 -0.849 -4.004 4.408
E3 -1.81 25.24 -0.91 -2.224 -0.851 -4.021 4.431
E4 -1.79 25.26 -0.60 -2.237 -0.857 -4.033 4.471
E5 -1.77 25.30 -0.31 -2.255 -0.860 -4.039 4.507
E6 -1.77 25.31 -0.01 -2.270 -0.872 -4.041 4.546
E7 -1.74 25.39 0.27 -2.282 -0.903 -4.035 4.575
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Given the coordinates, AMF intensities, and total intensities at various

measurement points in Table 5.8, the minimization of Eq. (5.3) yielded the predicted

coordinate of the smart rock as presented in Table 5.9. By comparing the predicted

coordinate with that measured from the total station, also listed in Table 5.9, a SRSS

coordinate error of 0.27 m was determined. The prediction error mainly occurred in X

coordinate likely because the measurement points on two close paths were not distributed

well and the measurement bar was inaccurately placed on top of the smart rock with

0.368 m in diameter. Nevertheless, the prediction error of 0.27 m is less than 0.5 m, a

target rock positioning accuracy set forth for engineering application.

Table 5.9. Predicted and measured location of smart rock SR1

Designation XM 1 (m) YM 1 (m) ZM 1 (m)

Predicted SR1coordinate -0.43 27.21 -3.13

Measured SR1coordinate -0.20 27.17 -3.26

Prediction Error -0.23 0.05 0.13

SRSS Error in Coordinate 0.27 m

Table 5.10 summarizes the coordinates, the AMF intensities, and the total

intensities after deployment of the two smart rocks SR1 and SR2 at 91measurement

points near Bent 2 and the 52 total intensities after the smart rock SR2 was moved to a

new position, designated as smart rock SR2'. The 52 measurement points were selected

from the 91 points due to the limited time limit available to cover the area of two smart

rocks.

Given k = 86521 nT.m3 for the two stacked N42 magnets and the coordinates, the

AMF intensities, and the total intensities at various measurement points in Table 5.10, the

minimization of Eq. (5.6) yielded the predicted coordinates of the two smart rocks SR1

and SR2 as presented in Table 5.11. Similarly, the predicted locations of the two smart

rock of SR1 and SR2' were also evaluated as listed in Table 5.12. The predicted

coordinates were compared with their corresponding ground truth data obtained from the

total station. The prediction errors in component and SRSS total are also included in

Tables 5.11 and 5.12 accordingly.
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Table 5.10. Coordinates and intensities for SR1 and SR2 or SR2' locations

Measuremen
t Point

Measurement Point
Coordinate

(m)

AMF
Intensity
(104 nT)

SR1&SR2&
AMF Intensity

(104 nT)

SR1&SR2'&
AMF Intensity

(104 nT)

Xi Yi Zi
( )M
XAB ( )M

YAB ( )M
ZAB ( )M

TB ( )M
TB

P1S1

E1 -2.92 33.04 -1.52 -2.114 -0.954 -4.036 4.545

NA

E2 -2.90 33.06 -1.21 -2.112 -0.967 -4.042 4.576

E3 -2.88 33.09 -0.91 -2.112 -0.994 -4.043 4.605

E4 -2.86 33.11 -0.60 -2.116 -0.994 -4.046 4.629

E5 -2.84 33.17 -0.32 -2.121 -1.013 -4.043 4.648

E6 -2.83 33.20 -0.01 -2.122 -1.011 -4.045 4.662

P1S2

E1 -2.90 31.97 -1.52 -2.105 -0.992 -4.029 4.471 4.493

E2 -2.88 32.00 -1.21 -2.099 -0.991 -4.042 4.527 4.519

E3 -2.86 32.06 -0.91 -2.105 -0.982 -4.049 4.577 4.544

E4 -2.84 32.08 -0.61 -2.106 -0.992 -4.053 4.617 4.566

E5 -2.82 32.11 -0.32 -2.108 -1.012 -4.052 4.645 4.584

E6 -2.80 32.10 0.00 -2.109 -1.037 -4.047 4.666 4.593

P1S3

E1 -2.86 30.70 -1.51 -2.088 -0.965 -4.037 4.361 4.442

E2 -2.85 30.70 -1.21 -2.087 -1.000 -4.040 4.451 4.478

E3 -2.83 30.74 -0.92 -2.089 -1.027 -4.041 4.525 4.512

E4 -2.81 30.77 -0.61 -2.092 -1.025 -4.048 4.585 4.541

E5 -2.79 30.80 -0.32 -2.097 -1.026 -4.051 4.628 4.565

E6 -2.77 30.83 -0.02 -2.101 -1.045 -4.043 4.655 4.583

P1S4

E1 -2.82 29.15 -1.53 -2.087 -0.956 -4.032 4.321

NA

E2 -2.82 29.13 -1.22 -2.085 -0.955 -4.045 4.391

E3 -2.79 29.17 -0.93 -2.096 -0.962 -4.050 4.455

E4 -2.78 29.19 -0.60 -2.093 -0.967 -4.057 4.516

E5 -2.75 29.23 -0.32 -2.097 -0.971 -4.061 4.562

E6 -2.74 29.23 -0.01 -2.102 -1.006 -4.053 4.597

P1S5

E1 -2.78 27.46 -1.52 -2.095 -0.909 -4.030 4.305 4.295

E2 -2.76 27.47 -1.22 -2.091 -0.928 -4.042 4.336 4.333

E3 -2.73 27.50 -0.92 -2.100 -0.940 -4.047 4.379 4.373

E4 -2.72 27.52 -0.62 -2.100 -0.958 -4.053 4.429 4.418

E5 -2.71 27.57 -0.32 -2.107 -0.948 -4.061 4.474 4.457

E6 -2.69 27.61 -0.02 -2.106 -0.969 -4.062 4.518 4.495

P1S6

E1 -2.73 26.33 -1.51 -2.097 -0.854 -4.038 4.378 4.337

E2 -2.71 26.37 -1.21 -2.088 -0.872 -4.053 4.371 4.338

E3 -2.69 26.42 -0.91 -2.097 -0.876 -4.060 4.389 4.359

E4 -2.67 26.45 -0.61 -2.106 -0.893 -4.063 4.420 4.391

E5 -2.64 26.48 -0.33 -2.109 -0.912 -4.067 4.454 4.425

E6 -2.64 26.48 -0.01 -2.106 -0.931 -4.070 4.494 4.461
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Table 5.10. Coordinates and intensities for SR1 and SR2 or SR2' locations (cont.)

P1S7

E1 -2.84 25.29 -1.50 -2.110 -0.868 -4.029 4.505

NA

E2 -2.81 25.34 -1.19 -2.104 -0.880 -4.043 4.490

E3 -2.79 25.39 -0.90 -2.112 -0.890 -4.050 4.490

E4 -2.77 25.41 -0.59 -2.110 -0.914 -4.056 4.498

E5 -2.75 25.46 -0.31 -2.116 -0.909 -4.064 4.511

E6 -2.74 25.46 0.01 -2.115 -0.937 -4.065 4.530

P2S1

E1 -1.94 33.08 -1.52 -2.167 -0.951 -4.024 4.561 4.535

E2 -1.94 33.14 -1.23 -2.176 -0.973 -4.033 4.622 4.573

E3 -1.92 33.20 -0.92 -2.190 -0.994 -4.038 4.672 4.608

E4 -1.89 33.21 -0.62 -2.203 -0.995 -4.045 4.710 4.637

E5 -1.88 33.25 -0.33 -2.224 -0.996 -4.044 4.736 4.661

E6 -1.86 33.25 -0.02 -2.236 -0.984 -4.046 4.753 4.674

E7 -1.84 33.30 0.26 -2.253 -0.984 -4.036 4.758 4.679

P2S2

E1 -1.93 32.04 -1.51 -2.232 -0.976 -3.980 4.525

NA

E2 -1.91 32.05 -1.22 -2.247 -0.997 -3.990 4.645

E3 -1.89 32.08 -0.92 -2.260 -1.000 -4.001 4.725

E4 -1.87 32.10 -0.62 -2.278 -1.010 -4.005 4.775

E5 -1.85 32.15 -0.33 -2.293 -1.006 -4.007 4.801

E6 -1.84 32.16 -0.02 -2.310 -0.998 -4.004 4.810

E7 -1.81 32.25 0.27 -2.319 -1.005 -3.994 4.805

P2S3

E1 -1.93 30.96 -1.51 -2.209 -0.966 -3.983 4.506 4.400

E2 -1.91 31.00 -1.20 -2.219 -0.963 -4.001 4.696 4.491

E3 -1.89 31.05 -0.92 -2.234 -0.967 -4.012 4.799 4.565

E4 -1.86 31.07 -0.61 -2.248 -0.970 -4.019 4.850 4.620

E5 -1.85 31.11 -0.33 -2.267 -0.978 -4.018 4.865 4.657

E6 -1.83 31.12 -0.01 -2.278 -0.988 -4.014 4.860 4.679

E7 -1.80 31.16 0.28 -2.291 -0.991 -4.003 4.845 4.686

P2S4

E1 -1.95 29.27 -1.51 -2.186 -0.946 -3.993 4.283

NA

E2 -1.93 29.27 -1.21 -2.197 -0.981 -4.002 4.451

E3 -1.92 29.32 -0.92 -2.214 -1.004 -4.007 4.576

E4 -1.90 29.34 -0.61 -2.230 -1.005 -4.014 4.660

E5 -1.87 29.38 -0.32 -2.245 -0.998 -4.019 4.716

E6 -1.86 29.39 -0.02 -2.257 -0.997 -4.018 4.744

E7 -1.85 29.43 0.28 -2.268 -1.002 -4.010 4.758

P2S5

E1 -1.94 27.66 -1.52 -2.154 -0.903 -4.006 4.022 4.107

E2 -1.93 27.70 -1.21 -2.175 -0.898 -4.023 4.176 4.229

E3 -1.91 27.75 -0.92 -2.189 -0.927 -4.032 4.308 4.335
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Table 5.10. Coordinates and intensities for SR1 and SR2 or SR2' locations (cont.)

P2S5

E4 -1.89 27.77 -0.61 -2.205 -0.924 -4.043 4.414 4.421

E5 -1.87 27.79 -0.33 -2.233 -0.924 -4.043 4.498 4.492

E6 -1.84 27.80 -0.01 -2.249 -0.912 -4.046 4.564 4.542

E7 -1.82 27.85 0.27 -2.265 -0.948 -4.033 4.613 4.587

P2S6

E1 -1.91 26.42 -1.51 -2.158 -0.877 -3.999 3.979

NA

E2 -1.88 26.43 -1.21 -2.177 -0.885 -4.015 4.065

E3 -1.86 26.46 -0.92 -2.194 -0.917 -4.023 4.177

E4 -1.85 26.49 -0.62 -2.215 -0.927 -4.031 4.289

E5 -1.82 26.54 -0.33 -2.231 -0.924 -4.038 4.383

E6 -1.81 26.52 -0.01 -2.248 -0.913 -4.044 4.464

E7 -1.78 26.57 0.27 -2.268 -0.926 -4.037 4.522

P2S7

E1 -1.86 25.12 -1.51 -2.183 -0.854 -3.985 4.344 4.288

E2 -1.84 25.18 -1.21 -2.202 -0.849 -4.004 4.342 4.280

E3 -1.82 25.22 -0.91 -2.214 -0.851 -4.021 4.369 4.313

E4 -1.80 25.25 -0.61 -2.227 -0.857 -4.033 4.408 4.357

E5 -1.77 25.27 -0.32 -2.245 -0.860 -4.039 4.452 4.402

E6 -1.75 25.28 -0.01 -2.260 -0.872 -4.041 4.496 4.447

E7 -1.73 25.32 0.28 -2.272 -0.903 -4.035 4.529 4.483

Table 5.11. Predicted and measured locations of two smart rocks SR1 & SR2

SR1 SR2
XM1 (m) YM1 (m) ZM1 (m) XM2 (m) YM2 (m) ZM2 (m)

Predicted coordinate 0.50 26.85 -2.54 -0.90 30.28 -3.78

Measured coordinate -0.20 27.17 -3.26 -0.40 30.55 -3.07

Prediction Error 0.70 -0.32 0.72 -0.51 -0.22 -0.71

SRSS Error 1.05 m 0.90 m

Table 5.12. Predicted and measured locations of two smart rocks SR1 & SR2'

SR1 SR2'
XM1 (m) YM1 (m) ZM1 (m) XM2 (m) YM2 (m) ZM2 (m)

Predicted coordinate 0.36 26.78 -2.44 0.19 31.64 -4.05

Measured coordinate -0.20 27.17 -3.26 0.59 30.41 -3.21

Prediction Error 0.56 -0.39 0.82 -0.40 1.23 -0.84

SRSS Error 1.07 m 1.54 m
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It can be calculated from the measured coordinates of SR1 and SR2 as listed in

Table 5.11 that SR1 and SR2 were spaced by 3.40 m. The SRSS prediction errors were

determined to be 1.05 m and 1.18 m for the predication of SR1 and SR2 locations,

respectively. The errors in Y coordinate were smaller than those in X and Z coordinate.

likely because the measurement points covered a large area of the two smart rocks in Y

direction (7 m) and a small area in X direction (1 m) and Z direction (1.5 m). In addition,

most measurement points were positioned on one side of the smart rocks in X and Z

directions. As discussed in Sections 3 and 4, the more uniformly distributed the

measurement points are around a smart rock, the more accurate the localization of the

smart rock.

The smart rock SR2 was moved to SR2' by 1.01 m towards the pier based on the

measured coordinates in Tables 5.11 and 5.12. It can also be calculated from the

measured coordinates of SR1 and SR2' in Table 5.12 that SR1 and SR2' were spaced by

3.34 m. In terms of location predication, the SRSS prediction errors were determined to

be 1.07 m and 1.54 m for SR1 and SR2', respectively. While the location prediction error

for SR1 together with smart rock SR2 versus SR2' is close, the location error for SR2' is

significantly higher than that for SR2 mainly because the number of measurement points

was reduced from 91 to 52. Indeed, by comparing Table 5.12 with Table 5.11, it can be

found that the increase in prediction error from SR2 to SR2' location mainly occurred in

Y direction, which is from -0.22 m to 1.23 m. In addition, SR2' was closer to the bridge

pier than SR2, and its APUS mechanism may be slightly more affected by the steel

reinforcement in the pier.

Figure 5.21 displays the measured locations of smart rocks SR1, SR2, and SR2'

on the upstream riverbed profile near Bent 2. The three-dimensional contour map was

created in ArcGIS based on the riverbed survey data collected with the sonar and the total

station in the Cartesian coordinate system O-XYZ. It can be seen that the smart rock SR2'

was moved closer to the pier and settled down to the scour hole around the pier. It is

noted that one smart rock SR1 alone can be tracked as it moves over time as

demonstrated at the I-44W Roubidoux Creek Bridge site in Missouri.
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Figure 5.21.  Two smart rock locations near the scour hole around Bent 2.

5.4. US HIGHWAY 63 GASCONADE RIVER BRIDGE

In this section, the US Highway 63 Bridge (No. A3760) over the Gasconade River

located approximately 9 km southeast of Vienna in Maries County, MO, was used as the

third test site to validate the performance of a smart rock. As shown in Figure 5.22, the

bridge is a 12-span continuous reinforced concrete-girder structure to support two lanes

of two-way traffic on US Highway 63. Pier 4 is located in the main channel of water flow

and potentially subjected to severe contraction scour and local scour, threatening the

safety of the bridge during a flood season.

Figure 5.22.  The US Highway 63 Gasconade River Bridge.
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5.4.1. Test Setup and Layout. To date, two field tests were carried out in

different seasons to validate the localization of one smart rock. Both were conducted near

Bent 4 with one lane of the roadway closed for safety. Figure 5.23 shows the overall test

plan and setup at the US63 bridge site. The center of a total station set on the Jefferson

City side of the bridge was used as the origin of a Cartesian coordinate system O-XYZ.

The test crane with an attached magnetometer sensor was mounted on a flatbed trailer

towed by a truck. The trailer was parked on the bridge deck at three stops (S1, S2 and S3

with 4.5 m equal spacing) along each of the two paths (P1 and P2 with 2 m spacing). For

each stop, seven elevations (E1, E2, E3, E4, E5, E6 and E7 with 0.3 m equal spacing)

were considered for magnetic field measurements. Therefore, a total of 42 measurements

were taken near Bent 4 in order to locate the smart rock SR1. The total station was used

to survey the smart rock and the magnetometer sensor for ground truth coordinate data.

5.4.2. Test Procedure. (1) Set the XYZ Coordinate System. As shown in

Figure 5.24, the total station was set near Bent 1 for its line of sight to the magnetometer

sensor, which is referred to as Point O at the origin of the global coordinate system O-

XYZ. The Y-axis was set along the south-bound traffic direction towards Rolla, MO. The

X-axis was set to be perpendicular to the Y-axis in horizontal plane, pointing to the

upstream of the river. The Z-axis points upward according to the right-hand rule. A

permanent point A on the bridge railing was surveyed for future reference.

(2) Assemble the Test Crane. As indicated in Figures 5.23(b), the forklift was first

set and tied to a flatbed trailer. The horizontal aluminum arm was then installed and ten

segments of carbon fiber tubes with 1.0 m each were assembled to lower down the

measurement points from the bridge deck. Finally, the horizontal bar was connected to

the bottom tube to support the magnetometer sensor and prisms for coordinate

measurement.

(3) Set up the STL Digital Magnetometer. As shown in Figure 5.23(b), the

magnetometer sensor was connected with an Ethernet cable to the laptop computer

through a mini Ethernet box set on a table. The computer included special software for

sensor control and the measurement of magnetic fields. The sensor and computer were

charged by two portable batteries.
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Figure 5.23. US63 Bridge site: (a) planning (unit: m), (b) test setup, (c) sensor and
prisms positions, and (d) forklift positions.
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Figure 5.24. Selection of the global coordinate system.

(4) Measure the Ambient Magnetic Field. The ambient magnetic field is

generated by the Earth and nearby ferromagnetic objects. It was measured prior to the

deployment of the smart rock, following the (path, stop, elevation) sequence as shown in

Figure 5.25(a). Figure 5.25(b) illustrates one stop of the forklift at P2S2 when the trailer

was parked at the marked location. At this stop, measurements (both coordinate and

magnetic field intensity) were taken at seven elevations. Note that one forklift position on

the bridge deck is related to seven sensor positions by moving the forklift up and down as

indicated in Figure 5.24(b).

Figure 5.25. Measurement sequence with example measurement points at P2S2.
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(5) Deploy or inspect the smart rock and measure its coordinates. During the first

series of tests, one smart rock SR1 with one N45 magnet in the APUS configuration as

shown in Figure 5.26 was dropped from the bridge deck into water around the upstream

side of Bent 4 for maximum scour depth monitoring. The smart rock was tied to a rope

and lowered down from the bridge deck to the river bottom at the predetermined area as

indicated in Figure 5.27. Due to strong water current at the time, it was determined to be

unsafe to ride a small boat around the deployed smart rock and get its location measured

with a total station. During the second series of field tests, it was found that the smart

rock deployed previously was washed away during the December 2015 flood. Thus,

another smart rock SR1 (identical to the previous one) was deployed during the second

series of field tests. This time, however, the smart rock was buried in the riverbed such

that the top of the smart rock was flush with the riverbed surface to make it more difficult

to be washed away. The smart rock was surveyed with the total station for ground truth

coordinate data.

(6) Measure the Total Magnetic Field. After the deployment of the smart rock

during the first or second series of field tests, the total magnetic field combining the

effects of the smart rock and the ambient magnetic field was measured following the

same sequence as used for ambient magnetic field measurement, as shown in Figure 5.25

Figure 5.26. Design of smart rock SR1: (a) schematic view and (b) prototype.
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Figure 5.27. Smart rock SR1: (a) location and (b) deployment.

5.4.3. Test Results and Discussion. Eqs. (5.1-5.3) were used to locate the

smart rock based on the measured coordinates, ambient and total magnetic fields at

various measurement points near Bent 4 of the Gasconade River Bridge. The first series

of field tests were carried out on December 11, 2015. Since the ground truth data of the

smart rock was not available, the prediction error cannot be evaluated.

The second series of field tests were performed on October 18, 2016. Table 5.13

summarizes the coordinates, the AMF intensities prior to deployment of the smart rock,

and the total intensities after deployment of the smart rock SR1 at 42 measurement points.

Given k =101770 nT.m3 for the N45 magnet calculated from the maximum residual flux

density, the measured total magnetic field (BT
(M)) and the three components (B(M)

AX, B(M)
AY

and B(M)
AZ) of the ambient magnetic field, the coordinate of the smart rock SR1 was

determined, which is listed in Table 5.14.

Table 5.13. Coordinates and magnetic field intensities at measurement points

Measurement
Point

Measurement Point
Coordinate (m)

AMF
Intensity
(104 nT)

SR1&AMF
Intensity
(104 nT )

Xi Yi Zi
( )M
AXB ( )M

AYB ( )M
AZB ( )M

TB

P1S1
E1 -3.06 64.04 -11.35 -1.605 -0.557 -4.767 5.093
E2 -3.12 64.02 -11.02 -1.601 -0.536 -4.766 5.085
E3 -3.10 64.06 -10.75 -1.630 -0.548 -4.750 5.079
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Table 5.13. Coordinates and magnetic field intensities at measurement points (cont.)

P1S1

E4 -3.11 64.02 -10.43 -1.626 -0.525 -4.750 5.072
E5 -3.10 64.03 -10.13 -1.629 -0.514 -4.744 5.066
E6 -3.09 64.04 -9.82 -1.635 -0.520 -4.735 5.058
E7 -3.11 64.06 -9.56 -1.646 -0.508 -4.726 5.052

P1S2

E1 -3.25 68.53 -11.42 -1.676 -0.667 -4.685 5.052
E2 -3.29 68.56 -11.09 -1.644 -0.663 -4.691 5.046
E3 -3.27 68.59 -10.82 -1.705 -0.692 -4.662 5.041
E4 -3.26 68.50 -10.50 -1.710 -0.673 -4.660 5.035
E5 -3.26 68.53 -10.21 -1.696 -0.733 -4.649 5.031
E6 -3.27 68.54 -9.90 -1.681 -0.667 -4.660 5.025
E7 -3.29 68.54 -9.61 -1.731 -0.651 -4.642 5.018

P1S3

E1 -3.10 73.07 -11.51 -1.754 -0.801 -4.625 5.016
E2 -3.10 72.94 -11.14 -1.774 -0.781 -4.617 5.012
E3 -3.11 72.98 -10.88 -1.771 -0.730 -4.621 5.008
E4 -3.12 73.00 -10.55 -1.794 -0.736 -4.608 5.004
E5 -3.13 73.00 -10.26 -1.797 -0.758 -4.598 5.000
E6 -3.13 73.00 -9.97 -1.790 -0.746 -4.597 4.996
E7 -3.13 73.04 -9.67 -1.827 -0.744 -4.580 4.992

P2S1

E1 -1.26 64.13 -11.31 -1.633 -0.513 -4.739 5.089
E2 -1.29 64.13 -10.99 -1.651 -0.496 -4.730 5.078
E3 -1.28 64.10 -10.69 -1.648 -0.470 -4.730 5.068
E4 -1.31 64.08 -10.39 -1.654 -0.456 -4.724 5.057
E5 -1.27 64.14 -10.11 -1.654 -0.490 -4.712 5.047
E6 -1.26 64.11 -9.82 -1.626 -0.404 -4.726 5.038
E7 -1.27 64.14 -9.51 -1.658 -0.445 -4.699 5.027

P2S2

E1 -0.97 68.69 -11.36 -1.717 -0.672 -4.621 5.019
E2 -1.14 68.70 -11.08 -1.719 -0.620 -4.624 5.012
E3 -1.16 68.68 -10.77 -1.726 -0.645 -4.611 5.002
E4 -1.16 68.64 -10.48 -1.731 -0.672 -4.598 4.993
E5 -1.15 68.61 -10.17 -1.738 -0.629 -4.597 4.982
E6 -1.14 68.64 -9.86 -1.735 -0.608 -4.594 4.974
E7 -1.16 68.63 -9.58 -1.752 -0.565 -4.587 4.963

P2S3

E1 -1.18 73.00 -11.46 -1.750 -0.757 -4.573 4.962
E2 -1.17 72.93 -11.13 -1.778 -0.693 -4.565 4.956
E3 -1.20 73.00 -10.86 -1.765 -0.702 -4.559 4.948
E4 -1.21 72.98 -10.55 -1.777 -0.727 -4.542 4.940
E5 -1.18 72.97 -10.26 -1.795 -0.682 -4.535 4.933
E6 -1.21 72.99 -9.96 -1.784 -0.698 -4.526 4.924
E7 -1.21 72.94 -9.64 -1.778 -0.672 -4.522 4.917
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Table 5.14.  Predicted and measured location of smart rock SR1

Coordinate XM (m) YM (m) ZM (m)

Predicted 0.15 66.30 -17.71

Measured 0.41 66.02 -17.46

Prediction Error -0.26 0.28 0.25

SRSS Total Error 0.46 m

Table 5.14 summarizes the measured and predicted coordinates (XM, YM, ZM ) of

the smart rock SR1. Figure 5.28 shows both the measured (M_SR1) and the predicted

(P_SR1) locations on the three-dimensional contour map of the riverbed in the coordinate

system O-XYZ. The prediction error in rock positioning was 0.46 m, which is less than

the error limit of 0.5 m for engineering application. This level of error is much larger than

that at other bridge sites mainly because of the high elevation of the Gasconade River

Bridge and thus large measurement distance up to 8m.

Figure 5.28.  The measured and predicted smart rock locations on the riverbed profile.
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Missouri) for monitoring of scour depth or riprap effectiveness. The smart rocks with an

automatically pointing upward system (APUS) were deployed around the scour critical

pier or abutment. Their location and movement were evaluated based on an optimization

algorithm using the measured ambient (three components) and total magnetic fields at

various measurement points around the smart rocks. All measurements were taken on the

bridge deck using a commercial digital 3-axis magnetometer. A custom-designed test

crane was built to support the magnetometer sensor, and mounted on a flatbed trailer to

facilitate the field measurement above water at close distance to the deployed smart rock.

A total station was used to survey the deployed smart rocks and measurement points for

ground truth coordinate data for comparison with the predicted smart rock locations in

field performance evaluation of the smart rock.

The localization of single smart rocks deployed at the three bridge sites was

successful with a prediction error of less than 0.5 m, a target rock positioning accuracy

set forth for engineering application. However, the localization for two smart rocks

deployed at the Highway 1 Waddell Creek Bridge site requires further studies. The two

smart rocks were difficult to locate individually. The localization error at the bridge site

exceeded 1 m, which is unsatisfactory in application.

The smart rock movement was discussed only at the I-44 Roubidoux Creek

Bridge site based on the available field measurements in different seasons. The predicted

displacements were in general agreement with the ground truth data. The prediction error

was likely caused by potentially misplaced measurement bar in the process of smart rock

survey.

The spherical smart rock directly placed between riprap rocks on the abutment

embankment of the Waddell Creek Bridge was unstable due to lack of interlock with the

natural rocks. They were washed away during high tide waves from the Pacific Ocean.

Smart rocks directly placed on top of the riverbed at the Waddell Creek Bridge and US63

Gasconade River Bridge sites were also washed away due to high tides and the December

27, 2015, flood, respectively. Additional smart rocks were thus deployed for future

monitoring by making them flush with the riverbed surface.
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6. SEMI-ACTIVE SMART ROCKS FOR DIFFERENTIABLE, ACCURATE, AND
RAPID POSITIONING: A PROOF-OF-CONCEPT STUDY

6.1. INTRODUCTION

In the previous sections, one or two magnets were embedded in concrete and

deployed as field agents to provide their position information for bridge scour monitoring

through remote magnetic field measurements with a magnetometer. The magnets

remained stationary during a short period (seconds) of each measurement. Therefore,

they are referred to as passive smart rocks. Passive smart rocks are cost effective and

simple in design and operation. However, the magnetic field measured with the

magnetometer represents a lumped effect of all smart rocks deployed near a bridge pier or

abutment, the Earth, and other ferromagnetic substances. It is difficult to locate individual

smart rocks as demonstrated at the Waddell Creek Bridge site, CA. In addition, the

magnetic field of the magnets is generally small in comparison with the Earth’s magnetic

field and may further be contaminated by the presence of nearby ferromagnetic

substances such as underground metal objects and steel reinforcement in a bridge pier

and deck. It also depends upon the N-S pole orientation of the magnets.

In this study, semi-active smart rocks are proposed and developed to overcome

the above difficulties by improving differentiability, accuracy, and efficiency in rock

positioning. Each semi-active smart rock consists of a specially-designed permanent

magnet system, a magnet rotation mechanism, an electric coil with many turns, and

necessary electronics such as rock ID and battery indicator. The concept of semi-active

smart rocks and their operation principle are first presented. A small-scale and a full-size

semi-active smart rock are then designed with an automatically pointing south system

(APSS) and prototyped to make the included magnet rotate according to a pre-determined

time-varying current applied through the coil. Next, they are characterized for rise time,

dynamic range, data repeatability, differentiability from other ferromagnetic substances,

and localization accuracy. Finally, they are validated in an open field where a total

magnetic field of the Earth, the magnet, the current coil, and any nearby ferromagnetic

substances is measured.
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6.2. SEMI-ACTIVE SMART ROCKS

To overcome the practical challenges associated with the static magnetic field

measurement of a passive smart rock, one strategy is to make the magnet inside a rock

rotate in a controllable fashion so that a time-varying magnetic field is generated and

measured. Once embedded in concrete, the resulting unit is referred to as a semi-active

smart rock since the total magnetic field intensity measured by a magnetometer includes

the effect of external power and excitation to rotate the magnet.

6.2.1. Concept and Operation Principle. The main goal of developing

semi-active smart rocks is to improve differentiability, accuracy, and efficiency in rock

positioning for applications in bridge scour monitoring. The differentiability is associated

with how separable smart rocks are in practical application. Identification (ID) numbers

can be assigned to a group of smart rocks to maximize their differentiability. The

accuracy is directly transferrable to the reliability of predicted scour depths from smart

rocks in application. Localization of smart rocks can be significantly improved when

time-varying magnetic fields by rotating a magnet can be measured with a magnetometer.

Time efficiency in locating smart rocks is critical in a matter of minutes in the peak of a

severe flood event. Having individual IDs, time-varying characteristics, and one- or two-

way communication can expedite the process of rock positioning.

Based on the above attributes, a semi-active smart rock mainly consists of a

permanent magnet, a magnet rotation mechanism, an electric coil for external excitation,

and necessary electronics such as rock ID and battery indicator. To rotate the magnet,

external DC provided with a battery must be transformed to AC using a converter. Once

powered, the current in the electric coil induces an external magnetic field that exerts a

magnetic force for magnet rotation in certain direction. The total magnetic field is

measured with a magnetometer while the magnet is rotating.

6.2.2. APSS with a Rotatable Magnet. To make the magnet inside a smart

rock rotate with minimum energy, a mechanical mechanism is proposed and specially

designed in an automatically pointing south system (APSS). The key of this mechanism

is to provide a low friction or frictionless interface between the magnet and the concrete

encasement of the smart rock so that the magnet is aligned to the south direction unless

disturbed with external power. Figure 6.1 illustrates such a rotating mechanism. As
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schematically shown in Figure 6.1(a), a cylinder magnet of 25 mm long and 11 mm in

diameter is embedded in a solid acrylic sphere of 38 mm in diameter. The inner solid

sphere is then enclosed by an outer spherical ball of 51 mm in diameter with the small

gap in between filled with low viscosity fluid for lubrication. To manufacture the APSS,

a 13 mm-diameter hole was first drilled through the center of a solid sphere at a depth of

32 mm to ensure that the magnet would be centered and balanced within the solid sphere.

The hole was then filled with a two-part acrylic resin of the same specific gravity as the

acrylic sphere. Next, two halves of an acrylic ball were placed outside the solid sphere

and sealed with the acrylic resin. Finally, a tiny hole was drilled through the outer ball

and sealed with the acrylic resin after lubrication fluid was injected to the required height.

To minimize friction between the inner sphere and the outer ball as shown in Figure

6.1(a), clear silicone fluid with a low viscosity of 5 cSt (centistokes) @ 250C and a

surface tension of 19.7 dynes/cm was selected. The low surface tension ensured less

energy would be required to rotate the magnet. Figure 6.1(b) presents the finished APSS

with the frictionless mechanism of a rotating magnet.

Figure 6.1. Small APSS with a rotatable magnet: (a) schematic view and (b) prototype.

Following the schematic view as shown in Figure 6.1(a), a full-size and improved

APSS has already been designed and prototyped in Section 2. For completeness, a brief

discussion is provided herein. The improved design consisted of one cylindrical N42

magnet with an attached level indicator, an inside organic glass ball, an outside organic

glass ball, propylene glycol liquid filled in between the two balls, and distributed copper

beads as balanced weights. As indicated in Figure 6.2, a level indicator was first attached

to the side of the magnet that is 10.2 cm in diameter and 5.1 cm in height. The opposite
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side of the magnet was then glued to the surface of half of the inside ball with a diameter

of 20 cm. Next, once completed, the whole inside ball was enclosed by two halves of the

outside ball that is 22 cm in diameter. Finally, low friction liquid was injected into the

gap between the inside and outside balls. The inside ball with the magnet and the level

indicator was designed to remain in equilibrium or free to rotate when it floated in the

outside ball. Therefore, the magnet in the APSS always points to the north pole of the

Earth’s magnetic field, which is approximately the geographical south of the Earth when

no ferromagnetic substances are present within 1 m distance.

Figure 6.2. Full-size APSS: (a) design and (b) prototype.

6.2.3. Magnet Rotation Control. The rotation control of the magnet in a

semi-active smart rock is provided by the circuitry of a printed circuit board (PCB) with

magneto-inductive communication [104]. To rotate the magnet, a current coil of over one

hundred turns was wrapped around a cylindrical core that was tightly fitted outside the

encased magnet as shown in Figure 6.3(a). To control the magnet rotation, an extension

board based on an H-bridge component was designed and connected to the free

Input/output (I/O) pins on the PIC microcontroller of v3.0 PCB. As schematically shown

in Figure 6.3(b), Input A and Input B of the H-Bridge were connected to the PIC
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Output A and Output B. The coil and a series resistive load (for current limiting purpose)
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strong magnetic field is generated within the coil core and the unrestrained magnet is free

to rotate and aligned along the magnetic field vector or the coil axis. If the direction of

current flow in coil is changed, the magnetic field vector will alternate, causing rotation

of the magnet. In addition, the semi-active smart rock with the v3.0 PCB and its

extension board is a comprehensive system that can be woken up by an external radio

frequency (RF) signal through magneto-inductive communication, acquire data from

embedded sensors as needed, and wirelessly transmit data to the base station. More

importantly, the magnet inside the smart rock can be remotely rotated following a pre-

programmed sequence as current was applied to the coil.

Figure 6.3. A magnet rotation system: (a) control system and (b) circuit design.

6.3. CHARACTERIZATION OF SEMI-ACTIVE SMART ROCKS

In this section, a field test using a small-scale APSS as the core of semi-active
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rise time, remains at 1 A for a given duration, decreases from 1 to 0 A in the rise time,

and remains at 0 A for the given duration. The duration is set equal to the rise time so that

the total period for each cycle of the current supply is four times the rise time.

Throughout the tests, the controllable magnet was located at the origin of a Cartesian

coordinate system as displayed in Figure 6.4(b). As verified with a military compass, the

axis of the coil was oriented along the North-South direction. As a result, the free-to-

rotate magnet was in alignment with the coil immediately after the current was switched

on. The magnetometer G858 was used to measure the total magnetic field strengths at

four locations: M1 and M2 (0.91 m and 1.52 m south of the magnet), and M3 and M4

(0.91 m and 1.52 m west of the magnet). At each measurement point, the magnet was

rotated with three current alternating rates corresponding to 0.2 sec, 0.5 sec, and 1.0 sec

rise times. In order to avoid its ferromagnetic effect, the power supply was placed

sufficiently far away from the controllable magnet and the sensor head. The total

magnetic field measured thus represented the combined effect of the Earth, the

controllable magnet, and the current coil. The effect of the current coil is neglected.

Figure 6.4. Characteristic tests at Ber Juan Park: (a) setup and (b) plan.

6.3.2. Test Data and Analysis. Figure 6.5 compares the static and time-

varying magnetic field intensities measured over time at M1 location. The constant field

intensity at the beginning and end of each time function represents the static magnetic

field of the stationary magnet with no rotation. Each time-varying measurement includes

15 cycles of magnet rotation. It can be observed from Figure 6.5 that the time-varying

magnetic intensities at 0.5 sec and 1.0 sec rise times are both repeatable over time with

their respective periods. The high and low intensities are nearly unchanged over time. At
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0.2 sec rise time, however, the high and low intensities slightly fluctuate over time. This

fluctuation is governed by a balance of the overshooting inertia force and the magnetic

force induced by alternating current in the coil; but it is limited by the maximum

sampling rate (10 Hz) of the magnetometer. In this case, no temporary stop of the rotating

magnet was observed.

Figure 6.5. Magnetic field intensities measured at Point M1 with three rise time.

Due to the repetitive patterns and periodic characteristics, the magnetic field

measurement of a magnet can be distinguished from that of surrounding ferromagnetic

substances. For example, the magnetic field of a permanent magnet could be significantly

weaker than the ambient magnetic field around a magnetized reinforcement cage in a

bridge pier. Their fields are thus hard to differentiate from each other with static

measurements. However, once rotated over time, the magnet generates unique time

responses that make its localization much easier. As shown in Figure 6.5, at the

beginning of tests or during the temporary stops (zero current applied), the total magnetic

field intensity represents an algebraic summation of the effects of a magnet and the Earth,

and thus reaches its maximum since the magnet and the Earth are aligned perfectly.

When rotated for half a cycle due to the applied current (1 A), the magnet is in opposite

alignment with the Earth, resulting in a minimum magnetic field intensity. After another

half a cycle of rotation, the magnet is again in perfect alignment with the Earth, thus

yielding the maximum total field intensity. This process repeats until the applied current

is terminated and the magnet returns to its initial state as indicated in Figure 6.5.

Figures 6.6 shows the relative intensity, periodicity, and accuracy of magnetic

fields measured at four locations with a current rise time of 0.2 sec. In this case, the
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magnet continues to rotate with no temporary stop. Due to the short period (0.8 sec) of

current alternation, the magnet cannot complete a full cycle of rotation and results in a

slightly fluctuated field intensity that is governed by an interaction of the overshooting

rotational inertia force and the magnetic force applied over time. In addition, the sample

rate of 10 Hz is too low for the magnetometer to acquire reliable data from a rapid

oscillation of the magnetic field intensity over time. Therefore, a rise time of 0.2 sec is

not appropriate in application.

Figure 6.6. Magnetic field intensities measured at four points with a rise time of 0.2 sec.

Similarly, Figure 6.7 compares the magnetic fields measured at four locations

when the coil current is applied with a rise time of 0.5 sec. In contrast to Figure 6.6,

complete cycles of magnetic field measurements are evidenced. For example, after the

completion of the first half a cycle, the magnet has sufficient time to be stabilized before

the next half a cycle of current is applied, resulting in low intensities at Points M1 and

M2 and high intensities at Points M3 and M4. The appearance of these valleys and peaks

in the time-varying function can ensure a reliable and accurate measurement of the

magnetic field intensity.

As also indicated in Figure 6.7, while the magnetic field measurements over time

at Points M1 and M2 are significantly smoother than those at Points M3 and M4. This is

mainly because the change in magnetic field when measured from west of the magnet is

more sensitive to any small magnet rotation than that when measured from south of the

magnet. This result is verified with slight improvement by the magnetic field
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measurements with a rise time of 1.0 sec, as shown in Figure 6.8. Indeed, the use of

longer rise time can reduce the sensitivity to any small rotation of the magnet when

measured from off the north-south pole direction. The plateaus at peaks and valleys of the

measured field intensities with longer rise time are much longer than those with a rise

time of 0.5 sec. However, further increase in rise time requires more time to complete

field tests or more power consumption in practical applications. Overall, a rise time of 1.0

sec appears an appropriate choice for the small APSS, leading to repeatable, periodic, and

accurate magnetic fields when measured over time from any location.

Figure 6.7. Magnetic field intensities measured at four points with a rise time of 0.5 sec.

Figure 6.8. Magnetic field intensities measured at four points with a rise time of 1.0 sec.
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6.4. APPLICATION OF SEMI-ACTIVE SMART ROCKS

In this section, the field tests using a full-size semi-active smart rock were also

preformed in the open baseball field at Ber Juan Park to validate the characteristics of the

magnetic intensity over time. Further, the localization algorithm proposed in Section 3

was improved to evaluate the location of the full-scale semi-active smart rock.

6.4.1. Test Setup with a Full-size Semi-active Smart Rock. The field tests

were also performed in the open baseball field at Ber Juan Park. As indicated in Figure

6.9(a), the semi-active APSS was located at the origin of the Cartesian Coordinate O-

XYZ. To locate the APSS, a sensor head of G858 Magnetometer was separately stationed

at Q1, Q2, Q3 …, Q25, and Q26 as photographically and schematically showed in Figures

6.9(b) and 6.9(c), respectively. The 26 measurement points with the magnetometer sensor

were selected to take into account the influence of inclination angle and distance on the

magnetic field intensity as discussed in Section 3. They are represented by wooden poles

and randomly distributed in height between two circles of 1.5 m and 5 m in diameter. A

total station as shown in Figure 6.9(b) was set up at far distance to survey the APSS and

26 sensor positions with a prism placed on top of each wooden pole. The semi-active

smart rock system is displayed in Figure 6.9(d), including a large APSS, a current coil

tightly enclosing the APSS, a v3.0 PCB, a magnet rotation extension board, a current

control, and a power supply. At a constant voltage of 3.6 V, the applied current

periodically alternates between 0 and 1 A at a predetermined interval. A current rise time

of 1.0 sec was programmed in the PCB to control the rotation of the magnet for each

measurement point.

Figure 6.9. Experimental layout: (a) test setup, (b) total station for coordinate
measurement, (c) measurement points, and (d) power, control, and APSS system.

(a) (b)
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Figure 6.9. Experimental layout: (a) test setup, (b) total station for coordinate
measurement, (c) measurement points, and (d) power, control, and APSS system (cont.).

6.4.2. Localization Algorithm. The general localization algorithm for an

APSS in the open field was formulated in Section 3. Thus, it is briefly discussed here as

an application to this particular case. Referring to Figure 6.10, a Cartesian coordinate

system O-XYZ is selected with X-, Y-, and Z-axis pointing to west, south, and upward,

respectively. Let the magnet in the APSS centered at the origin of the coordinate system,

Point O (XM, YM, ZM), and measurements taken at Point Qi (Xi, Yi, Zi) (i=1, 2, … , n) near

the APSS. The Earth's magnetic field is represented by the parallel vectors in YOZ plane

expressed with two parameters of magnitude, BE, and inclination angle, θ. The total

magnetic field of the Earth and the APSS are measured at various Point Qi, which is

denoted as BTi
(M). The total magnetic field can also be expressed into a summation of the

measured BE
(M) and the computed magnetic field Bi of the APSS, which is denoted as

BTi
(P) and can be expressed into:

2 2( ) 2 ( ) ( )( ) ( cos ) ( sin )P M M
Ti Xi Yi E Zi EB B B B B B              (6.1)
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Figure 6.10. Two extreme orientations of the APSS: (a) Case A and (b) Case B

As the magnet rotates about X-axis, its magnetic field changes direction. For the

two extreme cases in Figure 6.10, the Euler angles in the rotation matrix as discussed in

Sections 3-5 are: α = π, β = 0, and γ = 0 for Case A and α = 0, β = 0, and γ = 0 for Case B.

The magnetic fields at Point Qi (Xi, Yi, Zi) can then be expressed into:
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in Case B (6.2b)

To locate the APSS, an objective error function is defined into a SRSS difference

of the predicted and the measured total magnetic field intensity at all measurement points

Qi (i=1, 2,…, n). That is,
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Eq. (6.3) was minimized to solve for the coordinates of the APSS or Point O(XM, YM, ZM).

The Earth's magnetic field was measured around the 26 measurement points. The average

value was determined to be BE = 51860 nT·m3. As discussed in Section 3, the coefficient

k and θ at the same open site are k = 42542 nT·m3 and θ =67.7°.

6.4.3. Magnetic Field Intensity over Time. Figure 6.11 shows the static and

time-varying total magnetic intensities measured over time at selected twelve

measurement points. Only two cycles of magnet rotation with a total of four current

alternations were presented at each measurement point. It can be observed from Figure

6.11 that the constant field intensities at the beginning and end of the time functions

collected at all points represent the static measurements with no magnet rotation (Case A

as shown in Figure 6.10). The dramatic changes in intensity correspond to each and every

switch of current in the rise time. The fluctuation immediately following each switch was

associated with the back-and-forth rotation of the magnet due to the rotational inertia; it is

gradually damped out before the next switch of current is activated, resulting in constant

field intensities when the rotation of the magnet between Case A and Case B in Figure

6.10 is finally completed and stabilized. Upon two complete cycles of magnet rotation,

the static measurements of field intensities are resumed.

Specifically, take the measurement at Point Q3 in Figure 6.11 as an example. The

static intensity between 1 sec to 5 sec represents Case A in Figure 6.10 when the south

pole of the magnet is approximately oriented to the geographic South. Upon the first

application of current controlled by the code programmed into the PCB, the south pole of

the magnet is rotated and orientated to the opposite direction of the geographic South

after the magnet has swung back and forth for a couple cycles under two competing

forces: rotational inertia and magnetic force. The free vibration of the magnet

corresponds to the intensity fluctuation between 6 sec and 11 sec. The constant intensity

between 11 sec and 17.5 sec represents Case B in Figure 6.10 under the sustained current

of 1 A. At approximately 17.5 sec, the current is switched off and the south pole of the

magnet is rotated again and eventually oriented to the geographic South after a few cycle

of free vibration between 18.5 and 24 sec. A short period of small change afterward
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represents Case A again. Although slightly different in details, the two halves of the

cyclic response are similar, completing the full alternation of the orientation of the

magnet. The cyclic behavior is repeated in the following on-off cycle of current.

The periodic responses in magnetic field are also observed at other measurement

points as illustrated in Figure 6.11, validating the repeatability and periodicity of

magnetic field intensities under periodic current excitations. With the semi-active smart

rock, these features can be used to extract the intensity responses of a magnet in two

cases (A and B) from a single measurement, thus improving the accuracy of rock

positioning. The same features also enable the separation between the effects of the

magnet and other ferromagnetic substances. This is because the intensities at peaks and

valleys represent the summation and difference of the two magnetic field intensities

generated from the magnet and the Earth. For all points except Q12, the difference

between each pair of peak and valley intensities or between Case A and Case B is

significant. The exception at Point Q12 is because, as shown in Figure 6.9(c), it is located

nearly along the east-west direction and least responsive to the rotation of the magnet.

Based on the free vibration responses at all measurement points in Figure 6.11,

the damping ratio of the APSS can be estimated to be 1%. This level of damping verifies

the low friction between the inside and outside balls of the APSS, validating its design for

practical application.

Figure 6.11. Total magnetic field intensities over time at various points.
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Figure 6.11. Total magnetic field intensities over time at various points (cont.).

6.4.4. Localization of Semi-active APSS. Table 6.1 indicates the coordinates

and total magnetic intensities for Case A and Case B at 26 measurement points. Each

total magnetic intensity for Case A represents an average of the static measurements at

the beginning and end of tests at each point. Each total magnetic intensity for Case B is

the average value of the stabilized data after the first application of current.

Table 6.2 summarizes the predicted coordinates from the two sets of data in Case

A and Case B, compares the predicted with the measured coordinate, and presents the

SRSS errors in the positioning of the semi-active APSS. Overall, the SRSS errors in

location are 0.07 m and 0.05 m for Case A and Case B, respectively. These errors likely

resulted from that the measurement of coordinates and intensities at all points, which may

slightly differ from their expected locations. The nearby power supply may also affect
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slightly the measurement of magnetic field intensities. Nevertheless, the errors are quite

small compared to the size of the magnet, which validates that the localization algorithm

from two sets of data is quite accurate and reliable for application.

Table 6.1. Measured coordinates and intensities of the semi-active APSS

Measurement
Point

Xi (m) Yi (m) Zi (m)
BTi

(M) (104 nT)
(Case A)

BTi
(M) (104 nT)
(Case B)

Q1 2.17 1.39 0.88 5.314 5.111

Q2 2.84 2.73 0.52 5.242 5.175

Q3 1.37 2.33 0.29 5.381 5.053

Q4 1.55 3.91 0.78 5.269 5.151

Q5 0.38 2.99 0.89 5.408 5.020

Q6 -0.07 4.40 0.67 5.265 5.156

Q7 -0.06 1.77 0.68 6.201 4.308

Q8 -1.83 4.43 0.23 5.235 5.183

Q9 -1.43 2.75 0.75 5.337 5.088

Q10 -2.41 3.24 0.27 5.238 5.183

Q11 -2.05 1.83 0.43 5.275 5.166

Q12 -3.23 1.69 0.68 5.210 5.211

Q13 -2.30 0.51 0.69 5.149 5.292

Q14 -1.66 -0.73 0.23 5.050 5.482

Q15 -3.79 0.18 0.26 5.177 5.239

Q16 -2.41 -1.85 0.46 5.189 5.233

Q17 -1.08 -2.25 0.82 5.176 5.273

Q18 -2.01 -3.48 0.62 5.223 5.198

Q19 -0.79 -4.67 0.84 5.221 5.196

Q20 0.16 -3.30 0.38 5.272 5.154

Q21 1.24 -3.89 0.69 5.224 5.197

Q22 -0.01 -2.01 0.53 5.332 5.253

Q23 2.21 -2.45 0.53 5.199 5.224

Q24 1.64 -0.92 0.94 4.888 5.541

Q25 4.17 -0.59 0.52 5.185 5.233

Q26 2.56 -0.11 0.32 5.110 5.300
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Table 6.2. Predicted and measured coordinates of the semi-active APSS location

Location
Coordinate

Case A Case B
XM (m) YM (m) ZM (m) XM (m) YM (m) ZM (m)

Predicted 0.06 -0.00 0.04 0.02 0.00 0.05
Measured 0.00 0.00 0.00 0.00 0.00 0.00

Prediction Error 0.06 -0.00 0.04 0.02 0.00 0.05
SRSS Error 0.07 m 0.05 m

6.5. SUMMARY

In this section, a small-scale semi-active smart rock with an embedded, rotation-

controllable magnet was first proposed, designed, and characterized for its performance

in terms of the dynamic range of measurement, data repeatability, and differentiability

between the effects of the magnet and its surrounding ferromagnetic substances. Then, a

large-scale semi-active smart rock with the APSS proposed in Section 2 was designed

and tested to realize the localization from time-varying data sets. Based on the field tests

and analysis, the following conclusions can be drawn:

(1) The embedded magnet in small- and large-scale APSS can be rotated under

external power by applying current through a coil that is wrapped around the magnet. The

mechanism to make the magnet free to rotate is quite effective. Throughout each test

period, the magnet in the APSS consistently rotated and stopped as expected.

(2) The magnetic field intensity induced by a rotating magnet over time takes the

form of a time-varying function of the applied current through the electric coil wrapped

around the magnet. The known variation of the field intensity over time (e.g. periodic)

allows additional verifications on the quality of measured data.

(3) The time-varying magnetic field of a rotating magnet significantly differs

from the static field of a stationary magnet. This difference can be used to separate the

effects of magnets and other ferromagnetic substances, facilitating the detection of smart

rocks in practical applications.

(4) The rise time of current excitation is a key factor to achieve repeatable and

accurate measurements of the magnetic field induced by a magnet, depending on the

magnet size and the sampling rate of a magnetometer. Specifically, the overshooting

inertia force of a rotating magnet and current induced magnetic force determine a short
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period of free vibration of the magnet. The level of vibration is governed by the damping

of the APSS.

(5) The continuous data collection from an initial stationary magnet to the first

rotation of the magnet and from the last rotating to the final stationary state can

potentially be used to determine the orientation of the magnet with respect to the

measuring point.

(6) The two sets of data before and after rotation of a magnet allow the dual

localizations for the semi-active smart rock, resulting in higher reliability and accuracy in

application.
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7. CONCLUSIONS AND FUTURE WORK

7.1. MAIN FINDINGS FROM THE OVERALL DISSERTATION WORK

In this dissertation, a novel smart rock technology has been developed for the

monitoring of bridge scour and riprap effectiveness and demonstrated at three bridge sites.

Once properly designed, a smart rock functions like a field agent deployed around a

bridge pier for rock positioning, and rolls to the bottom of a scour hole around the bridge

pier. The position of the rock can be transformed to the maximum scour depth that is

critical in bridge design and maintenance. The change in smart rock position can also be

indicative of the disassembling process of a riprap mitigation measure. Therefore, a smart

rock can also be referred to as a “scour and movement sensor” for scour depth

measurement and riprap effectiveness monitoring.

The key technical challenge is to locate the smart rock before, during , and after a

flood event. To address this challenge, three types of passive smart rocks with Arbitrarily

Oriented System (AOS), Automatically Pointing South System (APSS), and

Automatically Pointing Upward System (APUS) were developed and characterized in an

open field and at a bridge site. Several localization algorithms were formulated based on

the minimization of an objective error function between the predicted and measured

magnetic field intensities. To further overcome the localization challenge, a semi-active

smart rock was developed and characterized for the measurement of time-varying

magnetic field intensities by rotating the magnet in smart rocks within a short period of

time. Based on extensive test data and localization analysis, the following main

conclusions can be drawn:

(1) The first model of smart rock with the AOS was developed by directly

embedding a magnet in concrete encasement. It is small in size and easy to fabricate but

less efficiency in computational time to determine the arbitrary orientation of the magnet.

This model is not recommended for practical application.

(2) The second model of smart rock with the APSS was developed by making a

magnet free to rotate like a compass needle so that the magnet is always oriented in

approximate alignment with the geographic south of the Earth, simplifying the process of

rock localization with the known magnet orientation. To locate the APSS effectively and
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accurately, sufficient number of measurements should be taken along the extension of the

south and north poles of the magnet since the field intensity at two poles is twice as much

as that at equators. Thus, the APSS is most desirable when measured at river banks.

(3) The third model of smart rock with the APUS was developed by making the

south pole of a magnet point upward with unbalanced weights, which is most desirable

when measurements are taken from the bridge deck in bridge scour monitoring. In

comparison with the APSS, the gravity-controlled APUS (e.g. orientation) is less affected

by steel reinforcement and other ferromagnetic substances when deployed in proximity to

a bridge pier, thus improving the accuracy of rock localization.

(4) For the purpose of rock localization, the effective measurement distance of a

cylinder magnet depends on the maximum residual flux density and volume of the

magnet and its relation with the measurement station. The larger the flux density and/or

the volume, the stronger the magnetic field generated by the magnet and the further the

measurement distance for effective magnetic field intensity. For the selected cylindrical

magnet (N42) in this study, the most sensitive and reliable measurement distance ranges

from 1.5 m to 7.5 m.

(5) The localization errors for the AOS and APSS at the open field site were less

than 10 cm, which is quite accurate and satisfactory. They may be caused by the non-

perfect collocation of the measurement point and the magnetometer sensor and by the use

of the averaged Earth's magnetic field of all measurement points.

(6) The localization errors of the AOS and APSS in the open river bank area near

a bridge pier at the Gasconade River Bridge site were between 10 cm and 20 cm likely

due to the non-perfect collocation of the measurement point, the magnetometer sensor for

magnetic field measurement, and the AMFOD for direction measurement of the ambient

magnetic field. The error for the APSS may also be attributed to a small rotation of the

magnet in the ambient magnetic field particularly when the APSS was located near the

bridge pier.

(7) In comparison with the APSS, the gravity-controlled APUS is not affected by

the presence of steel reinforcement in nearby bridge piers in application. The smart rocks

with the APUS were implemented around scour critical piers of the three bridges. A

single smart rock was successfully located with an accuracy of less than 0.5 m, a target
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set forth with bridge engineers. However, the localization of two smart rocks led to a

prediction error of over 1.0 m. This is mainly attributed to the non-optimal selection and

distribution of the measurement points due to physical limits, and the error in ground

truth data for the location of smart rocks underwater.

(8) At the I-44W Roubidoux Creek Bridge site, the prediction errors of one smart

rock with the APUS were less than 35 cm based on three series of field tests in different

seasons, which is satisfactory in engineering application. The reasons for the errors may

include the influence of passing vehicles during intensity measurements, the non-perfect

collocation of measurement points and the sensor head as a result of wind induced

movement, and the potentially-misplaced bar in the process of acquiring ground truth

location of the smart rock.

(9) At the State Hwy1 Waddell Creek Bridge site, the smart rock deployed around

the south abutment was located with a prediction error of 0.36 m mainly due to wind

induced movement of the sensor during the first series of tests. The single smart rock

deployed near Bent 2 during the second series of field tests was located with a prediction

error of 0.27 cm, which was less than the diameter of the smart rock and acceptable for

engineering application.

(10) At the US Hwy63 Gasconade River Bridge site, the smart rock deployed in

the upstream of Bent 4 was located with a prediction error of 0.46 m, which is still

acceptable for engineering application. The larger error at this particular site was largely

because this bridge is much higher than the other two bridges and the measurement points

are farther away from the deployed smart rock.

(11) The semi-active smart rock with a rotation-controllable APUS significantly

overcomes several challenges with the passive smart rocks as stated in the first ten

conclusions. Under current excitation, the magnet rotates in a predetermined function and

generates a time-varying magnetic field intensity. One time-varying measurement gives

multiple useful parameters such as the maximum and minimum intensities with two

extreme orientations of the magnet and the free vibration of the magnet as a result of the

interaction between two balanced inertial and magnetic forces. Therefore, the time-

varying measurement enables the separation of ambient magnetic field from that of the

magnet successfully. The unique data set taken before, during, and after the magnet
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rotation also allow an accurate localization of two smart rocks. Magneto-inductive

communication with individual smart rocks may further help locate them reliably in field

conditions.

7.2. FUTURE WORK

Although the potential of the smart rock technology has been successfully

demonstrated to certain extent in an open field and at three bridge sites, this project

represents the first study of smart rock implementation. For practical applications, several

improvements can be made in the following directions:

(1) The spherical smart rocks with 0.368 m in diameter and a density of 1495

kg/m3 deployed at three bridge sites were designed based on the critical velocity of water

flow. The rocks directly placed on the riverbed at the State Hwy1 Waddell Creek Bridge

and US Hwy63 Gasconade River Bridge sites were washed away due to tidal waves from

the Pacific Ocean in California and the December 27, 2015, flood in Missouri,

respectively. For the monitoring of riprap effectiveness, a polyhedral shape of smart

rocks is recommended since it can provide the interlock with other natural rocks in the

riprap measure. For the measurement of scour depth, spherical rocks may be embedded in

deposits to ensure their top is flush with the riverbed surface and increase their resistance

to water current. More studies to derive accurate hydraulics data at bridge sites are

needed to improve the design of smart rocks.

(2) The custom-built crane used to facilitate the field tests for measurements at

close distance to the deployed smart rocks has been demonstrated to be effective.

However, the assembling of such a crane takes more than one hour and its operation

requires lane closure on the bridge deck. The awkward crane also limits the number of

measurement points in application. Therefore, future research is directed to the

development of a mobile platform with an unmanned aerial vehicle (UAV) so that

measurements can be taken above water in the vicinity of bridge piers without

interrupting traffic on the bridge. The effects of the UAV on the magnetic field and the

operation speed on the measured data need to be investigated.

(3) Using a total station to survey smart rocks and magnetometer sensors for their

coordinates is viable during field tests but not conducive in terms of efficiency and
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accuracy. A high accuracy positioning system that is integrated into the smart rocks and

magnetometer sensors would be desirable.

(4) The Earth’s magnetic field and the secondary field of magnetized

ferromagnetic substances at and around a bridge change over time. After smart rocks

have been deployed near the bridge, the time-varying measurements can no longer be

taken accurately. Therefore, a well-calibrated mathematic model of the ambient magnetic

field at the bridge site was highly desirable so that the time-varying magnetic field can be

simulated consistently and accurately.
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